HOMEN ENPOYERUEN	VIVEKANANI	DHA COLLEGE OF A (AUTO) Elayampalayam, Ti	IOMO	DUS)		DR WOMI	EN	CONTINUES ISO 90012008	
Programme	M.Sc	Programme Code	PCH Regulations 2020-2022							
Department	Cł	nemistry				Semester	•		1	
Course Code	Cou	irse Name	per	erioc We	ek	Credit	Maximu		m Marks	
20P1CH01	CORE PAPER Concepts of Or Stereochemistry	L 5	Т	Р	C 05	CA 25	ES 75			
Course Objectives		tudents to learn about in various organic rea			nistı	ry of organic	compoun	ds ar	nd to enrich	
POs		PROG	RAM	ME	C OU	UTCOME				
PO 1		strating comprehensive k			ınd ı	understanding c	of one or m	ore di	isciplines that	
PO 2	form a part of an undergraduate programme of study. Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.									
PO 3	Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications									
PO 4		blate from what one has le ems rather than replicate o				-				
PO 5	arguments of other	e the reliability and rele s analyse and synthesise d	ata fro	m a v	varie	ty of sources dra	aw valid Co	nclusi	ons.	
PO 6		and capability for asking to recognise cause and effe			-				-	
PO 7	-	fectively and respectfully up and act together as a gr					-			
PO 8	ideas, evidence and	interpret and draw conclu l experiences from an oper	n mind	ed ar	nd re	asoned perspect	ive.		•	
PO 9		to lived experiences with s				-				
PO 10		CT in a variety of learnin information sources and u	-				-		ate and use a	
PO 11	through to complet		-			-			nage a project	
PO 12		e of the values and beliefs of								
PO 13	ethical issue from	e moral ethical values in o nultiple perspectives and u	ise eth	ical p	oract	ices in all work.		-		
PO 14	inspiring vision bu	pping out the tasks of a t ilding a team who can help	o achie	ve th	e vis	ion motivating.				
PO 15		knowledge and skills inclues throughout life through			ng h	ow to learn that	t are necessa	ary fo	r participating	

COs	COURSE OUTCOME
CO 1	Students will be known to name the organic compounds systematically and they will be able to assess the aromaticity of any organic compounds.
CO 2	Students can able to understand the formation of intermediates in organic reactions and the students can able to determine the mechanism of new organic reactions.
CO 3	Students can able to understand the nucleophillic substitution reactions.
CO 4	Knowledge of students will be enriched with stereochemistry and various types of substitution reactions which will help the students to carry out the research in future.
CO 5	Students will systematically name the natural products and will study their stereochemistry.
Pre-requisites	

					KNO	OWLE	DGE	LEVE	LS						
1.R	1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing														
	ſ	3/2/1 ;	ndicat	es the st		/ PO /			0	2-med	ium 1	-weak)			
Cos	(3/2/1 indicates the strength of corre Cos KLs								POs			-wcan)	KI	S	
									PO				2		
CO	1				4				PO				1		
CO /	`				1				PO	3			5		
CO	2				1				PO	4			5		
CO	3				3				PO :				4		
	5				5				PO				6		
CO	4				5			PO 7				2			
							PO 8				4				
CO	5		6					PO 9 PO 10				3			
								PO 10 PO 11				3			
PSO	S]	KLs			PO 12				2			
PSO	1				3			PO 12				1			
PSO	2				4				PO 1	4			2		
PSO	3				1				PO 1	5			1		
						CO/P									
	(3/2/1 i	ndicat	es the st	rength	n of cor	relati	on, 3-s	trong,	2-med	lium, 1	-weak)			
COs						Prog	gramn	ne Out	come	(POs)	r		r	r	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9			PO12	PO13	PO14	PO15
C01	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO2	2	3	1	1	1	1	2	1	3	1	1	2	3	1	1
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO4	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1
CO5	1	1	2	2	1	3	1	1	1	1	1	1	1	3	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
Cas	Programme Specific Outcome (POs)										
Cos	CO1	CO2	CO3	CO5							
PSO1	1	3	2	2	1						
PSO2	2	2	1	3	2						
PSO3	2	1	2	1	1						

Course Assessment Methods						
Direct						
1. Continuous Assessment Test I, II & Model						
2. Assignment						
3. End Semester Examinations						
Indirect						
1. Course End Delivery						

	Content of the Syllabus									
	Nomenclature and Aromaticity	Periods	15							
Unit - INomenclature of aromatic heterocyclic compounds (containing one or two atoms) – Nomenclature of alicyclic, bicyclic and tricyclic compounds. Com Aromaticity – aromatic character of benzene and heterocyclic compounds – b pyrole and pyridine. Effect of aromaticity on bond length, resonance ener induced ring currents. Huckels rule – concept of homoaromaticity and antiarom Nonbenzenoid aromatic compounds – cyclopropeniumcation, cyclopentadieny ferrocence, diazocyclopentadiene, sydnones, azoulene, tropolone ion, tropylium annulenes – their structures and aromaticity.										
	Reactive intermediates and methods	Periods	15							
Unit - II	Structure, Stability, Generation and Reactions of Ca Nonclassical), carbanions, carbenes, nitrenes and free rac types and reactions. Enamines - Generation and reactions. T control – methods of determination of reaction mechani determination of the presence of intermediate, isolation, de experiments – isotopic labeling - isotopic effect – stereo c evidence. Microscopic reversibility – Hammond Postul relationship – Hammette equation – Taft equation - Li deviations.	licals.Ylides – Thermodynamic sms – produc tection, trappir hemical evider ate - Linear mitations, app	Generation, c and kinetic t analysis – ng – cross of nce – kinetic free energy lication and							
Unit - III	Nucleophilic substitution reactions Aliphatic Nucleophilic substitution reactions: SN1, SN2, affecting nucleophiclic substitution - Neighbouring grou nucleophilies and ambient substrates. Substitution at vinyl bridge head carbon.Von Braun reaction, Claisen condensati	p participation carbon, allylic	n, Ambident carbon and							

	Aromatic Nucleophilic substitution reactions: SN1, SN2 and S Typhical reactions such as Gattermann reaction, Gattermann Koch Tiemann reaction, Koble reaction. Ziegler alkylation – Chichibab substitutions.	reaction	on, Reimer –
	Electrophilic Substitution reactions Period	ls	15
Unit - IV	Aromatic Electrophilic substitution reactions: Introduction - Electrophilic substitutions with examples. Orientation and reactive substitution on monosubstituted and disubstituted benzenes. Alig substitution reactions: SE1 and SE2 reactions – Mechanism and reactive involving the migration of double bond – Halogenation of carbonyl Enamine reactions – decarboxylation of aliphatic acids. Friedel olifinic carbon.	vity – ohatic reactivi compo	Electrophilic Electrophilic ity. Reaction unds – Stork
	Stereochemistry Period	ls	15
Unit - V	Principles of symmetry- concept of chirality, Molecualr symm Newmann, Sawhorse, Fischer and Wedge representations and inter of molecules exhibiting optical activity. Configurational nomencla cyclic molecules: cis-trans, E & Z, D & L, (+ or –), d & l, R & S syn&anti. Stereospecific, Chemo, Regio, Enantio and stereo - tranformations, asymmetric synthesis – Crams rule. Conformation disubstitutd ethane derivatives – disubstituted cyclohexanes and th features. Conformation and reactivity of substituted cyclohe cyclohexanones (reduction) and conformations of heterocycles.	conver ture of , eryth: - selec nal ana heir ste	sions. Types acyclic and ro and threo; tive organic alysis – 1,2- ereochemical
	Total Periods		60

Text	Text Books							
1	Mukargee S.H. and Singh S.P., McMillan 1976.							
2	Raj K. Bansal, , Hill Publishing Company Ltd 2006.							
3	Ernest L. Eliel, Stereochemistry of Carbon Compounds, T.M.H Edition, 1975.							
Refer	References							
1	Finar I.L., Organic chemistry Pearson Education P Ltd 2011							
E-Re	ferences							
1	1 www.masterorganicchemistry.com/2017/02/23/rules-for-aromaticity							
2	www.introorganicchemistry.com							

HOULT - SERE JEINER	VIVEKANANI	DHA COLLEGE OF A (AUTO) Elayampalayam, Ti	NOM	OUS)		OR WOMI	EN	TÜVRhein CERTIFI	ISO 9001-2008
Programme	M.Sc	Programme Code	PCH Regulations 2020-2022							
Department	Cl	nemistry				Semester				1
Course Code	Сог	ırse Name		erioc We T		Credit				larks
						С	CA	ES	SE	Total
20P1CH02	CORE PAPER Transition meta Chemistry	5			05	25	7:	5	100	
Course Objectives	-	cnowledge on physica ements. 2. To give ela								
POs		PROG	RAM	ME	E OI	UTCOME				
PO 1		strating comprehensive k			and u	understanding of	of one or m	ore d	liscip	lines that
PO 2	form a part of an undergraduate programme of study. Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.									
PO 3	Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications									
PO 4		olate from what one has leaders rather than replicate				-				
PO 5	arguments of other	te the reliability and release analyse and synthesise d	ata fro	mav	varie	ty of sources dr	aw valid Co	nclus	ions.	
PO 6		and capability for asking to recognise cause and eff								-
PO 7	•	fectively and respectfully oup and act together as a g					•			
PO 8	ideas, evidence and	interpret and draw conclu d experiences from an ope	n mind	ed ai	nd re	asoned perspect	tive.		-	
PO 9		to lived experiences with							-	
PO 10	variety of relevant	ICT in a variety of learning information sources and u	se app	ropri	ate s	oftware for anal	ysis of data			
PO 11	through to complet		•			•			nage	a project
PO 12	-	e of the values and beliefs		-		-				
PO 13	-	e moral ethical values in multiple perspectives and		-			-	argu	ment	about an
PO 14	inspiring vision bu	pping out the tasks of a ilding a team who can help	p achie	ve th	e vis	sion motivating.				
PO 15		knowledge and skills inclues throughout life through			ng h	ow to learn that	t are necessa	ary fo	or part	ticipating

COs	COURSE OUTCOME
CO 1	Students will learn the metallurgy and general properties of transition, and inner transition elements.
CO 2	Students can explore constructive application of nuclear chemistry.
CO 3	Students will know the present national and international status in nuclear mission.
CO 4	Students will analyze the various nuclear decay process.
CO 5	Students will evaluate the present methodologies in nuclear waste treatment.
Pre-requisites	

KNOWLEDGE LEVELS															
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing CO / PO / KL Mapping															
(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
Cos	Cos KLs								POs				KI		
CO 1					2				PO				2		
					2				PO				1		
CO 2					3				PO				5		
					5				PO				5		
CO 3					2				PO				4		
									PO				2		
CO 4					4			PO 7 PO 8				4			
							PO 9				1				
CO 5					5			PO 10				3			
								PO 11				3			
PSOs	5			ł	KLs			PO 12				2			
PSO 1	1				3			PO 13				1			
PSO 2	2				4				PO 1	4			6		
PSO 3	3				1			PO 15				3			
	,					CO/P									
	(3/2/1 i	ndicat	es the st	trength						lium, 1	-weak)		
COs							gramn	l –							
		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		PO11		PO13	PO14	PO15
CO1	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO2	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO3	3	2	1	1 1 1 1			1	1	2	2	2	3	2	1	2
CO4	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO5	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
Programme Specific Outcome (POs)											
Cos	CO1	CO2	CO3 CO4								
PSO1	2	3	2	2	1						
PSO2	1	2	1	3	2						
PSO3	2	1	2	1	1						

Course Assessment Methods						
Direct						
 Continuous Assessment Test I, II & Model Assignment End Semester Examinations 						
Indirect						
1. Course End Delivery						

Content of the Syllabus									
	Transition Elements	Periods	15						
Unit - I	Position in the periodic table - Electronic configuration - General characteristics - Atomic radii - Ionic radii - Variation along the period and group - Variable valency - Colour - Magnetic properties - Catalytic property - Non-stoichiometry - Stabilization of unusual oxidation states - Structure (only) of d-block complexes - $[Nb_6Cl_{12}]^{2+}$ - $[Re_2Cl_8]^{2-}$ - $[Mo_6Br_8]^{4+}$ - $[Ni_2(DMG)_2]$.								
	Inner Transition Elements	Periods	15						
Unit - IIPosition in the periodic table - Electronic configuration - Oxidation state - SolutionMagnetic properties - Colour and Spectra - Separation of lanthanides - Lanther contraction - Cause and consequences - Gadolinium break - Shift reagents - Extr of Thorium and Uranium - Comparison of lanthanides and actinides- application lanthanides and actinides.									
	Fundamentals of Nuclear Chemistry	Periods	15						
Unit - III	Nuclear structure-mass and charge - Nuclear moments -Nuclear models (shell model and liquid drop model) - Binding energy - Stability rules - Magic numbers - n/p ratio - Nuclear forces - Modes of redicagetive decay - Alpha decay - range - Jonizing power								
Unit - IV	Nuclear Reactions and Instrumental Techniques	Periods	15						

	Bethe's notation - Q value - Reaction cross section - Threshold energy - Columbic barrier - Excitation function - Various types of nuclear reactions - Scattering - evaporation - photonuclear - Spallation - Fragmentation - Fission - Fusion - Stripping - Pick-up reactions - Detection and measurement of radioactivity - Proportional counter - Geiger-Muller counter - Scintillation counter - Semiconductor detector - Cloud chamber								
	- Charged particle accelerator - Linear accelerator - Cyclotron - Beatron - Synchroton.								
	Nuclear Energy and Trace Elements	Periods	15						
Unit - V	Nuclear fission and Nuclear reactors - Characteristics of fission reactions - Product distribution of fission, Theories of fission - Fissile and fertile isotopes - Nuclear fusion and stellar energy - Fusion home synthetic elements - Nuclear wester - nuclear								
	Total Periods 75								

Text Books								
H.J. Arnikar, Essentials of Nuclear Chemistry, 4th Edn., New Age International 2005.								
J.D. Lee, Concise Inorganic Chemistry, 6th Edn., ELBS, London 1998.								
References								
D. Shriver, M. Weller, T. Overton, J. Rourke, and F. Armstrong, Inorganic Chemistry, 6th Edn., WH								
Freeman and Company, New York 2014.								
C.E. Housecroft, and A.G. Sharpe, Inorganic Chemistry, 4th Edn., Pearson Education Limited, Essex								
2012.								
E-References								
chemed.chem.purdue.edu/genchem/topicreview/bp/ch23/history.php								
e								

NOMEN ENPOWERNEN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.									
Programme	M.Sc	M.Sc Programme Code PCH Regulations 2020-202								
Department	Cł	nemistry				Semester			1	
Course Code	Cou	irse Name	per	erioc We	ek	Credit			n Marks	
			L	Т	Р	С	CA	ES	E Total	
20P1CH03	CORE PAPER Group theory, I Chemistry	I: Kinetics and Surface	5			05	25	75	5 100	
Course Objectives	 To teach knowledge of classifying the molecules based on symmetry and gain knowledge in identifying the point group of the unknown molecules. Understand the conception of kinetics and catalysis. 									
POs		PROG	RAM	MF	E OI	UTCOME				
PO 1		strating comprehensive k ndergraduate programme o			and a	understanding o	f one or m	ore di	isciplines that	
PO 2	Ability to express	thoughts and ideas effect confidently share ones vie	tively	in w				with	others using	
PO 3		y analytic thought to a b ne basis of empirical evide								
PO 4		blate from what one has le ems rather than replicate o				-				
PO 5	arguments of other	e the reliability and rele s analyse and synthesise d	ata fro	m a v	varie	ty of sources dra	aw valid Co	nclusi	ons.	
PO 6		and capability for asking to recognise cause and eff			· ~				-	
PO 7		fectively and respectfully up and act together as a gr								
PO 8		interpret and draw conclu l experiences from an oper			-	-		l criti	cally evaluate	
PO 9		to lived experiences with s						nd soc	ciety.	
PO 10		CT in a variety of learnin information sources and u							ate and use a	
PO 11	Ability to work in through to complet	dependently, identify apprion.	opriat	e res	ource	es required for a	a project an	d mar	nage a project	
PO 12	Possess knowledge	of the values and beliefs	of mul	tiple	cultu	ires and a globa	l perspective	e.		
PO 13	-	e moral ethical values in a nultiple perspectives and u		-			-	argun	nent about an	
PO 14	inspiring vision bu	pping out the tasks of a tilding a team who can help	o achie	ve th	e vis	ion motivating.	-			
PO 15		knowledge and skills inclues throughout life through			ng h	ow to learn that	are necessa	ry foi	r participating	

COs	COURSE OUTCOME
CO 1	Students will be able to identify point groups using symmetry elements and recognize symmetry operations.
CO 2	Students will learn to integrate knowledge to make rational answers in solving chemical problems.
CO 3	Students can measure the rate of a chemical reaction.
CO 4	Students will learn to evaluate the effect of catalyst, temperature on the rate of a chemical reaction and determine the activation energy.
CO 5	Students will learn and understand the importance, applications and basic aspects of surface chemistry.
Pre-requisites	

KNOWLEDGE LEVELS															
1.R			_	ndersta	CC) / PO /	/ KL N	/Iappir	ng					ing	
(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) Cos KLs POs KLs															
									PO				2		
CO	1				3				PO	2			1		
СО	r				4				PO	3			5		
	2				4				PO				5		
СО	3				1				PO				4		
					1				PO				6		
CO	4				2			PO 7 PO 8					4		
							PO 9				1				
CO	5		5				PO 10				3				
PSC	\ a			IZI .				PO 11				3			
P30)s		KLs				PO 12				2				
PSO					3			PO 13				1			
PSO					4			PO 14				6			
PSO	3				1			PO 15 3 Mapping							
	(3/2/1 i	ndicat	es the st					trong,	2-med	lium, 1	-weak))		
COs						Prog	gramn	ne Out	come	(POs)					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO2	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO3	2	3	1	1	1	1	2	1	3	1	1	2	3	1	1
CO4	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO5	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
Car		Programme Specific Outcome (POs)									
Cos	CO1	CO2	CO3	CO4	CO5						
PSO1	3	2	1	2	1						
PSO2	2	3	1	1	2						
PSO3	1	1	3	2	1						

Course Assessment Methods Direct 1. Continuous Assessment Test I, II & Model 2. Assignment 3. End Semester Examinations Indirect 1. Course End Delivery

Content of the Syllabus									
	Basics of Group Theory	Periods	15						
	Principles of group theory - Symmetry elements and Symmetry	netry operation	s. Properties						
	of group - Abelian, non Abelian, sub groups and cyclic gr								
Unit - I	tables, Classes and similarity transformation. Molecular po								
	of point group of molecules. Representation of groups								
	symmetry elements, Reducible and irreducible representatio	·							
	representation - Great orthogonality theorem and its conserved to be a solution of C_{1} and C_{2}	equences - Co	nstruction of						
	character table for point groups $(C_{2v}, C_{3v} \text{ and } C_{2h})$.	Periods	15						
	Applications of Group Theory								
	Standard reduction formula and conversion of reducible rep								
	representation, direct product representation. Hybridization schemes for atoms in								
Unit - II	molecules of different geometry - AB_4 tetrahedral and AB_3 triangular planar.								
Onit - II	Symmetries of vibrational modes in non linear molecules (H_2O , NH_3 and BF_3). Selection rules for vibrational spectroscopy – IR & Raman active, mutual exclusion rule								
	and electronic transitions in formaldehyde. Symmetry in crystals - Hermann - Mauguin								
	symbols Space groups of crystals -Translational elements of symmetry – Comparison								
	of crystal symmetry with molecular symmetry								
	Chemical Kinetics	Periods	15						
	Reactions in solution: Comparison between gas phase and liquid phase reactions. Effect								
	of dielectric constant on reactions in solutions, effect of ionic strength on reactions in								
Unit - III	solutions - Primary salt effect. Influence of pressure on rates of reactions in solution -								
	significance of volume and entropy of activations. Study of fast reactions: Flow								
	methods, pulse methods and relaxation methods. Chain r								
	stationary chain and explosion, Explosive reaction of H_2O_2 .	Linear free ener	rgy relation -						
	Hammett and Taft equation.	D 1	1.5						
Unit - IV	Kinetics and Catalysis	Periods	15						

	Acid-base catalysis – Types and mechanism. Hammet and Bronsted equation, Acidity function – Hammett-Deyrup acidity function, Hammett-Zucker hypothesis – Catalysis in biological systems. Enzyme catalysis - Michaelis-Menten equation. Factors affecting enzyme catalysed reaction: substrate concentration, pH and temperature. Inhibition of enzyme catalyzed reaction.							
	Surface Chemistry	Periods	15					
Unit - V	Adsorption - Types of adsorption. Physical Adsorption isotherm: Freundlich's adsorption isotherm, Langmuir's adsorption isotherm, Brunauer-Emmett-Teller (BET)							
	Total Periods 75							

Text	Books
1	K.V. Raman, Group Theory, Tata McGraw - Hill Education (2004).
2	V.Ramakrishnan and M.S. Gopinathan, Group theory in chemistry, Vishal Publications, 1988.
3	A.S. Kunju, G. Krishnan, Group Theory and Its Applications in Chemistry, 2nd Edn, PHI learning private Ltd (2015).
4	B.R. Puri, L.R. Sharma, M.S. Pathania, Principles of Physical Chemistry, Vishal Publishing Co. (2016).
5	K.J. Rajaram and J.C. Kuriakose, Kinetics and mechanism of chemical transformations, Macmillan India Ltd (1993).
6	K.J. Laidler, Chemical Kinetics, Pearson (2009).
7	K. Veera Reddy, Symmetry and Spectroscopy of Molecules, New age international (2009).
8	Gurudeep Raj, Advanced Physical Chemistry, Goel Publishing House, (2014).
9	Gurudeep Raj, Surface Chemistry, Goel Publishing House, (2002).
Refe	rences
1	F.A. Cotton., Chemical Applications of Group Theory 2nd Edn, Wiley Eastern Ltd (1989).
2	Capellos and B.H.J. Bielski, Kinetic systems, Willey interscience, Newyork, 1968.
3	P.W. Atkins., Physical Chemistry, 6th Edn, Oxford University Press, (1998).
4	Alan Vincent, Molecular Symmetry and Group theory – Programmed Introduction to chemical applications, Wiley, Newyork, 1977.
E-Re	ferences
1	http://vlab.amrita.edu/?sub=2&brch=193∼=1013&cnt=1
2	http://unicorn.mcmaster.ca/teaching/4PB3/SymmetryLectureNotes2009-Vallance-Oxford-level2.pdf
3	http://cbc.arizona.edu/~salzmanr/480a/480ants/kinintro/kinintro.html
4	http://nptel.ac.in/courses/122101001

MOMEN ENPOWERNENT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.										
Programme	M.Sc	Programme Code			P	СН	Regulati	ons	2020-2022		
Department	Ch	emistry				Semester	•		2		
Course Code	Cou	rse Name	per	erioc We	ek	Credit			m Marks		
20P2CH04	CORE PAPER Organic Reaction		L 5	Т	Р	C 05	CA 25	ESE 75	E Total		
Course Objectives	1. To enrich the students knowledge in the field of reactions and reagents involved organic chemistry. 2. To impart knowledge in understanding the reaction conditions and mechanisms to arrive required product.										
POs		PROG	RAM	MF	E OI	UTCOME					
PO 1		strating comprehensive k ndergraduate programme			and 1	understanding o	of one or m	ore dis	sciplines that		
PO 2	Ability to express	thoughts and ideas effect confidently share ones vie	tively	in w				e with	others using		
PO 3		y analytic thought to a basis of empirical evide							e arguments		
PO 4		plate from what one has leaders rather than replicate				-					
PO 5	arguments of other	e the reliability and rele s analyse and synthesise d	ata fro	mav	varie	ty of sources dra	aw valid Co	nclusio	ons.		
PO 6		and capability for asking to recognise cause and eff									
PO 7	-	ectively and respectfully up and act together as a g					-				
PO 8	ideas, evidence and	interpret and draw conclu l experiences from an ope	n mind	ed ai	nd re	asoned perspect	ive.		-		
PO 9		to lived experiences with				-			•		
PO 10		CT in a variety of learni information sources and u	-				-		te and use a		
PO 11	through to complet					•			age a project		
PO 12	-	of the values and beliefs		-		-					
PO 13	-	moral ethical values in nultiple perspectives and		-			-	argum	ent about an		
PO 14	inspiring vision bu	pping out the tasks of a ilding a team who can hel	p achie	ve th	ie vis	sion motivating.			_		
PO 15	• •	knowledge and skills inclues throughout life through	-		ng h	ow to learn that	t are necessa	ary for	participating		

COs	COURSE OUTCOME
CO 1	Students will learn the addition reactions taking place in the organic molecules.
CO 2	Students acquire deep knowledge on elimination reactions.
CO 3	Students can understand the path of different molecular rearrangements.
CO 4	Students will learn about the mechanism and applications of various naming reactions used in organic synthesis.
CO 5	Students will evaluate the role of reagents in organic synthesis.
Pre-requisites	

KNOWLEDGE LEVELS															
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing CO / PO / KL Mapping															
	(3/2/1 i	ndicat	es the st					-	2-med	ium. 1	-weak)	,		
Co		0/2/11			KLs	- 01 00		<u>, e</u> 5	PO:			(cuir)	, KI	_S	
СО	1				2				РО	1			2		
	1				Z				PO	2			1		
СО	2				2				PO				5		
									PO				5		
СО	3				2				PO				4		
									PO				2		
CO	4			4				PO 7 PO 8				4			
	_							PO 9				1			
CO	5				5			PO 10				3			
PSC)e		KLs					PO 11				3			
								PO 12					2		
PSO					3			PO 13				1			
PSO					4			PO 14				6			
PSO	3				1		O Ma	PO 15 3 Mapping							
	(3/2/1 i	ndicat	es the st					trong,	2-med	lium, 1	-weak))		
						Pro	gramn	ne Out	come	(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO3	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO4	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO5	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)											
Programme Specific Outcome (POs)												
Cos	CO1	CO2	CO3	CO4	CO5							
PSO1	2	2	2	2	1							
PSO2	1	1	1	3	2							
PSO3	2	2	2	1	1							

Course Assessment Methods							
Direct							
1. Continuous Assessment Test I, II & Model							
2. Assignment							
3. End Semester Examinations							
Indirect							
1. Course End Delivery							

	Content of the Syllabus									
	Addition reactions	Periods	15							
 Unit - I Addition across C-C multiple bonds – Electrophillic, Nucleophillic, Free radical orientation and reactivity – Addition of halogen and nitrosyl chloride to olefin Hydration of olefins and acetylenes. Epoxidation, Hydroboroation, Hydroxylation Michael addition and Brich reduction. Diels Alder reaction, 1,3-dipolar addition Carbenes, Nitrenes and their addition to double bond. Simmon-Smith reaction Mannich, Stobbe, Darzen, Wittig, Wittig-Horner, Grignard, Thope and Benzoi condensation. 										
	Elimination reactions	Periods	15							
Unit - II	Elimination reactions – Mechanism of E1, E2 and E elimination, Hofmann and Saytzeff rules – competition substitution – Pyrolytic – Cis elimination, Chugaev reaction Dehydration, dehydrohalogenation, Hofmann degradation, rule.	between Elin – Typical reac	nination and tions such as							
	Molecular rearrangements	Periods	15							
Unit - III	A detailed study of the mechanism of the following Meerwin, Demyanov, Dienone–Phenol, Favorski, Baeyer Von – Richter, Beckmann, Kornblum–DeLaMare, Smile Ireland-Claisen, Hofmann–Martius rearrangements.	– Villiger, Wo	olff, Stevens,							
	Organic naming reactions and applications	Periods	15							
Unit - IV	A detailed study of the following naming reactions - Bi Hoesch reaction, Vilsmeyerformylation, Bucherer reaction Heck reaction, Suzzuki, Stille, Sonogashira, Negishi, Ca reactions. Huigens synthesis. Baylis-Hillman, Luche, Yama	, Pauson – Kh diot–Chodkiew	and reaction,							
Unit - V	Reagents for Organic synthesis	Periods	15							

Aluminium chloride, Alumniumisopropoxide, N-Bromosuccinimide, OsO4, DCC, N-
Chlorosuccinimide, Diazomethane, Fenton's reagent, Hydrogen peroxide, Lead
tetraacetate, Lithium aluminium hydride, Perbenzoic acid, Periodic acid, Seleniun
dioxide, Sodium borohydride, NaCNBH3, DDQ, Wilkinson catalyst, Wolff Kishner reagent, Wittig reagent.

Total Periods

7	5
1	2

Text	Books								
1	Jerry March, Advanced organic chemistry - Reactions mechanism and structure, McGraw Hill Kogakusha Ltd., 1977.								
2	S.H. Mukhergee and S.P. Singh, Reaction mechanisms in organic chemistry, McMillan 1976.								
3	Raj K.Bansal, Organic Chemistry Reaction mechanisms, Hill Publishing Company Ltd 2006								
4	I.L. Finar, Organic chemistry, Vol. II. Pearson Education P Ltd 2011								
Refe	References								
1	S. N. Sanyal, Reactions, Rearrangements and Reagents, Bharati Bhavan Publishers & Distributor 2011								
2	V.K. Ahluwalia, Rakesh Kumar Parashar and R. K. Parashar, Organic Reaction Mechanisms Narosa Publishing House 2002								
E-Re	ferences								
1	https //www.name-reaction.com/list								
2	https //www.synarchive.com/named-reactions								

HOMEN EMPONERIEM	VIVEKANANI	DHA COLLEGE OF AI (AUTON (Elayampalayam, Tiru)MC	DUS)		DR WOMI	EN	TÜVRheinland GERTIFIED	ISO 9001:2008
Programme	M.Sc	Programme Code	PCH Regulations 2020-20							2022
Department	С	hemistry				Semester			2	2
Course Code	Co	urse Name	pe	erio r W	eek	Credit			n Marl	
20P2CH05	CORE PAPER Chemical Bond Chemistry	V: ing and Coordination	L 5	Т	Р	C 05	CA 25	ES 75		'otal 100
Course	1. To impart the l	knowledge on types of bo	ondir	ıg in	sim	ple and compl	ex molecu	les.		
Objectives	2. To understand	the concept of HOMO an	nd L	UM	D, ai	nd their influer	nce in bond	l forn	nation.	
POs		PROGR	AM	MF	C OU	UTCOME				
PO 1		strating comprehensive know			and u	inderstanding o	of one or m	ore di	iscipline	s that
PO 2	form a part of an undergraduate programme of study. Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.									
PO 3	Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications									
PO 4		plate from what one has lead ems rather than replicate cu				-				
PO 5	arguments of other	e the reliability and relevents analyse and synthesise dat	a fro	mav	varie	ty of sources dra	aw valid Co	nclusi	ons.	
PO 6	articulating ability	and capability for asking re to recognise cause and effec	t rela	ation	ships	define problem	ns formulate	hypo	theses.	-
PO 7	•	ectively and respectfully w up and act together as a group					•			
PO 8	ideas, evidence and	interpret and draw conclusi l experiences from an open	mind	ed ar	nd re	asoned perspect	ive.			aluate
PO 9	-	to lived experiences with se				-			-	
PO 10		CT in a variety of learning information sources and use					-		ate and	use a
PO 11	through to complet					-			nage a p	roject
PO 12	-	of the values and beliefs of		-		-				
PO 13	ethical issue from r	moral ethical values in co nultiple perspectives and us	e eth	ical p	oract	ices in all work.				
PO 14	inspiring vision bu	pping out the tasks of a tea ilding a team who can help a	achie	ve th	e vis	ion motivating.	-			
PO 15		knowledge and skills includ as throughout life through se			ng h	ow to learn that	t are necessa	ry foi	r particij	pating

COs	COURSE OUTCOME
CO 1	Students will acquire sound knowledge on bonding in inorganic molecules.
CO 2	Students will learn the theories, mechanism of complex formation and the electronic spectra of coordination complexes.
CO 3	Students will acquire knowledge about term symbols and its applications.
CO 4	Students will analyze the bioinorganic molecules in coordination chemistry.
CO 5	Students will evaluate the various coordination theories.
Pre-requisites	

KNOWLEDGE LEVELS															
1.R	1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing CO / PO / KL Mapping														
	(3/2/1 i	ndicat	es the st					-	2-med	ium, 1	-weak))		
Cos	5]	KLs				PO	5			KI	2S	
СО	1				2				PO	1			2		
	1				2				PO				1		
CO	2				3				PO				5		
									PO				5		
CO	3				2				PO PO				4		
									PO				2		
CO	4		4					PO 8				4			
60	~		5					PO 9				1			
CO	5		5					PO 10				3			
PSO	S		KLs					PO 11				3			
				-				PO 12				2			
PSO PSO					3			PO 13 PO 14				1 6			
PSO PSO					4			PO 14 PO 15				3			
150	5					CO/P	O Ma	pping	101	5					
	(3/2/1 i	ndicat	es the st					trong,	2-med	ium, 1	-weak))		
<u> </u>						Pro	gramn	ne Out	come	(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO2	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO3	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO4	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO5	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)											
	Programme Specific Outcome (POs)											
Cos	CO1	CO2	CO3	CO4	CO5							
PSO1	2	3	2	2	1							
PSO2	1	2	1	3	2							
PSO3	2	1	2	1	1							

Course Assessment Methods

Direct

1. Continuous Assessment Test I, II & Model

Assignment
 End Semester Examinations

Indirect

1. Course End Delivery

	Content of the Syllabus						
	Ionic Bonding	Periods	15				
Unit - I	Ionic bonding - Lattice energy - Born equation-Born-Haber Born Mayer equation - Kapustinskii modification - energetic compounds in polar solvents - polarization-Fajan s rule Electronegativity – determination -Types of chemical forces - melting and boiling points, solubility.	es of the dissolution of the dis	tion of ionic polarization.				
	Covalent Bonding and Molecular Structure	Periods	15				
Unit - II	Covalent bonding Formal charges-Limitations of octet rule- Hybridization and geometry-VSEPR model of methane, ammonia, water, silicon tetrafluoride, AX ₂ and AX ₄ type, and some xenon compounds, Bent's rule - Failures of VBT-MO theory LCAO method-Molecular orbitals in homo nuclear diatomic molecules of oxygen beryllium, nitrogen and carbon, hetero nuclear diatomic molecules such as HCl, NO and CO-HOMO and LUMO concepts in bonding.						
	Coordination Theories	Periods	15				
Unit - III	CFT-Splitting pattern of d-orbital in various environme tetrahedral, square - planar-CFSE-Factors affecting the mag strong fields-Pairing energy-Jahn Teller distortion - Nephla CFT-LFT-Evidence for covalent nature of metal-ligand Construction of MO diagram for sigma and pi Oh complexes	gnitude of CFS uxetic effect-L bonds-pi-bon	E-Weak and imitations of				
	Reaction Mechanism in Coordination Complexes	Periods	15				
Unit - IV	Stability of complexes, Thermodynamic and kinetic stability-stability constants- Substitution reactions-General mechanism-Schemes of octahedral, tetrahedral and square planar complexes-Trans effect-Theories of trans effect-pi-bonding theory and polarisation theory - Applications of trans effect-Catalysis by transition metal complexes, Hydrogenation of alkene-Wilkinson's catalyst, Hydroformylation - Oxo process, Wacker process and Zieglar-Natta catalysis.						

	Electronic Spectra and Organometallics	Periods	15			
Unit - V	Spectroscopic term symbols for dn ions-derivation of term term symbols-Energy level diagrams. Electronic spectra of interpretation of electronic spectra of d1 to d9-Tanabe-Sugar spectra-Carbonyls Binuclear and tri nuclear carbonyls of iro uses - Nature of M-CO bond in carbonyls - Nitrosyls-N Metallocenes Ferrocene, Cobaltocene-Preparation, Propertie	complexes-Org no diagrams-ch on - preparation lature of M-N	el diagram - arge transfer n, properties, O bonding -			
Total Periods75						

Text	Text Books						
1	J. E. Huheey, E. A. Keiter and R. L. Keiter., Inorganic Chemistry, 4th Edn, Pearson education 2006						
2	R. D. Madan., Modern Inorganic Chemistry, Chand Publishers 2004						
Refei	References						
1	C. N. Banwell., Fundamentals of Molecular Spectroscopy, Mc Graw Hill, Newyork 2001						
2	R. Chang., Basic principles of Spectroscopy, McGraw Hill Ltd., New York, 1971						
E-Re	E-References						
1	http //chemed.chem.purdue.edu/genchem/topicreview/bp/ch8/vsepr.html						
2	http://www.chem.iitb.ac.in/people/Faculty/prof/pdfs/L5.pdf						

HOUEN EMPONERNEN	VIVEKANANI	DHA COLLEGE OF (AUTO) Elayampalayam, T	NOM	OUS	5)		DR WOMI		Rheinland Rheinland Intrikto
Programme	M.Sc	Programme Code			PO	СН	Regulati	ons	2020-2022
Department	Cl	nemistry				Semester	•		2
Course Code	Со	urse Name		Periods er Week Credit			Max	ximum	Marks
			L	Т	Р	С	CA	ESE	Total
20P2CHCP01	CORE PRACTIC Organic Chemist				5	04	40	60	100
Course Objectives	chemical reaction organic compour	of this lab is to prov n in functional group a nds via a variety of o and job opportunities.	nalysi	s. 2.	It a	ulso gives han	ds-on trair	ning to	synthesize
POs		PROG	RAM	ME	E OI	UTCOME			
PO 1		strating comprehensive landergraduate programme			and ı	understanding o	of one or m	ore disc	iplines that
PO 2		thoughts and ideas effect confidently share ones vie						e with o	thers using
PO 3		y analytic thought to a le basis of empirical evide							arguments
PO 4		blate from what one has leave the state of t							
PO 5	-	e the reliability and relist analyse and synthesise c				-	-		
PO 6		and capability for asking to recognise cause and ef							
PO 7	on the part of a gro	ectively and respectfully up and act together as a g	roup in	the	intere	ests of work effi	iciently as a	member	of a team.
PO 8	ideas, evidence and	interpret and draw conclu l experiences from an ope	n mind	ed ai	nd re	asoned perspect	ive.		-
PO 9	Critical sensibility	to lived experiences with	self aw	aren	ess a	nd reflexivity of	f both self a	nd socie	ty.
PO 10		CT in a variety of learni information sources and u	-				-		e and use a
PO 11	Ability to work in through to complet	dependently, identify app ion.	ropriat	e res	ource	es required for	a project an	ıd manaş	ge a project
PO 12	Possess knowledge	of the values and beliefs	of mul	tiple	cultu	res and a globa	l perspectiv	e.	
PO 13	-	moral ethical values in nultiple perspectives and		-			-	argume	nt about an
PO 14		pping out the tasks of a ilding a team who can hel						tion forr	nulating an
PO 15		Ability to acquire knowledge and skills including learning how to learn that are necessary for participating n learning activities throughout life through self paced.							

COs	COURSE OUTCOME
CO 1	Students can able to investigate and report an unknown compound systematically.
CO 2	Students will be known to synthesize, recrystallize and finding melting point of an organic compound. It will help them to carry out their research in future.
CO 3	Students can apply knowledge on identifying various functional groups.
CO 4	Students will analyze the various separation methods.
CO 5	Students can evaluate different binary organic mixtures.
Pre-requisites	

					KNO	OWLE	DGE	LEVE	LS						
1.F	Remei	nberin	ig, 2.U	ndersta	-	3.App / PO				, 5.Eva	luating	g, 6.Syı	nthesiz	ing	
	((3/2/1 i	ndicat	es the st	rength	of co	rrelati	on, 3-s	trong,	2-med	ium, 1	-weak)			
Cos	5			J	KLs				PO	8			KI		
СО	1				3				PO				2		
	1				5				PO				1		
СО	2				1				PO				5		
									PO				5		
СО	3				3				PO				4		
									PO PO				2		
CO	4				5				PO				4		
							PO 9				1				
CO	5		2				PO 10				3				
							PO 11				3				
PSC)s		KLs					PO 12				2			
PSO	1				1			PO 13				1			
PSO	2				4			PO 14				6			
PSO	3		1				PO 15				3				
				_		CO/P									
	((3/2/1 i	ndicat	es the st	rength				-		ium, 1	-weak)			
COs			1			Pro	gramn	ne Out	come		1	1	1	1	1
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO2	1	1	2	2	1	3	1	1 1 1 1 1 1		1	1	3	1		
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO4	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1
CO5	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)							
G	Programme Specific Outcome (POs)						
Cos	CO1	CO2	CO3	CO4	CO5		
PSO1	3	1	3	1	3		
PSO2	2 1		2	2	2		
PSO3	1	1	1	1	1		

Course Assessment Methods
Direct
 Continuous Assessment Test I, II & Model Assignment End Semester Examinations
Indirect
1. Course End Delivery

	Content of the Syllabus					
	Qualitative analysis of binary mixture of organic compounds :	Periods	30			
Unit - I	Unit - I Preliminary pilot analysis, pilot report, bulk separation, systematic analysis of eac component inclusive of preliminary identification, confirmatory tests, derivativ preparation and recording melting point/boiling point of components.					
	Single stage preparations	Periods	45			
Unit - II	Unit - II Single stage preparation of organic compounds involving synthetic methods like oxidation, acylation, nitration, sulphonation, Bromination, Esterification, hydrolysis and condensation (six preparations).					
Total Periods						

Text	Text books						
1	Antony J. Hannaford, Austin R. Tatchell, Brian S. Furniss, Peter W.G. Smith, Vogel's Text Book of practical organic chemistry, Pearson Education (2006).						
Refe	rences						
1	V. Venkateshwaran, R. Veerasamy, A. R. Kulandaivelu, Basic principles of practical chemistry, Sultan Chand & Sons,New Delhi, 2016						
E-Re	ferences						
1	http://www.chem.uwimona.edu.jm/lab_manuals/c10expt25.html						
2	http://vlab.amrita.edu/?sub=2&brch=191∼=345&cnt=1						
3	http://amrita.olabs.edu.in/?sub=73&brch=8∼=116&cnt=1						

Money Endowed and a series of the series of	VIVEKANANI	OHA COLLEGE OF AR (AUTONO) Elayampalayam, Tiruc	ΜΟ	S)			DR WOMI		ISO 90012008 IOVRONATIANT CENTRATO	
Programme	M.Sc	Programme Code	PCH Regulations					ons	2020-2022	
Department	(Chemistry				Semester	:		2	
Course Code	Co	Course Name			ods eek	Credit	Max	imun	n Marks	
			L	Т	Р	С	CA	ESE	E Total	
20P2CHCP02	CORE PRACT Inorganic Chen	ICAL II: histry Practical-I			5	04	40	60	100	
Course Objectives	on the properti	aining in microscale ex- es of ions and their co y and job opportunities								
POs		PROGRA	MM	E ()UT(COME				
PO 1		strating comprehensive known dergraduate programme of st		and	l unde	erstanding o	f one or m	ore dis	sciplines that	
PO 2		thoughts and ideas effective confidently share ones views a						e with	others using	
PO 3		y analytic thought to a body the basis of empirical evidence							e arguments	
PO 4		plate from what one has learn ems rather than replicate curr								
PO 5	-	e the reliability and relevan s analyse and synthesise data				-	-			
PO 6	A sense of inquiry	and capability for asking rele to recognise cause and effect	vant a	ppro	priate	questions p	roblematisi	ng syn	thesising and	
PO 7		ectively and respectfully with up and act together as a group								
PO 8		interpret and draw conclusion experiences from an open m		-		-		l critic	ally evaluate	
PO 9	Critical sensibility	to lived experiences with self	aware	eness	and r	eflexivity of	f both self a	nd soci	ety.	
PO 10		CT in a variety of learning s information sources and use a							ate and use a	
PO 11	Ability to work in through to complet	lependently, identify appropr	iate r	esou	rces re	equired for a	a project an	d mana	age a project	
PO 12	Possess knowledge	of the values and beliefs of n	nultip	e cu	ltures	and a globa	l perspective	e.		
PO 13	2	moral ethical values in con- nultiple perspectives and use		•			•	argum	ent about an	
PO 14		pping out the tasks of a team lding a team who can help ac					etting direct	ion for	rmulating an	

PO 15	Ability to acquire knowledge and skills including learning how to learn that are necessary for participating
PO 15	in learning activities throughout life through self paced.

COs	COURSE OUTCOME
CO 1	Students will learn how to conduct a process systematically and precisely.
CO 2	The qualitative analysis gives a type of mental training and develops a power of reasoning not equal to any other course in chemistry.
CO 3	The students will learn the nature, significance, and influence of errors and how they may best be avoided or minimized during qualitative and quantitative examination of a chemical compound.
CO 4	Students will analyze the use of complexometric titrations in water analysis
CO 5	Students will evaluate the rare cations using qualitative analysis.
Pre-requisites	

	KNOWLEDGE LEVELS															
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing																
CO / PO / KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)																
Cos	Cos KLs									s	(cuir)	KI	2S			
СО	1				2				РО				3			
									PO PO				4			
CO	2				3				PO				2			
									PO				5			
CO	3				1				PO	6			5			
CO	CO 4				1			PO 7					3			
	•				-		PO 8 6 PO 9 4									
CO	5						PO PO				4					
									PO				3			
PSO	s]	KLs				PO			5				
PSO	1				1				PO	13		2				
PSO					1				PO 1		4					
PSO	3				1			•	PO 1	15			6			
		(3/2/1 i	ndicat	es the st		CO/P			trang	2-med	ium 1	-weak)				
	, I	(5/2/11	inuncut		a engen				-			((cuix)	·			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	Pamme Outcome (POs) PO7 PO8 PO9 PO10 PO11 PO12 PO13 PO14 PO						PO15		
CO1	2	1	2	3	1	1	2	1	1	2	2	1	3	1	1	
CO2	3	2	1	2	1	1	1	1	2	1	3	1	2	2	1	
CO3	1	1	3	2	1	1	1	1	1	3	1	1	2	1	1	
CO4	1	1	3	2	1	1	1	1	1	3	1	1	2	1	1	

CO	5	1 1 3 2 1 1 1 1 3 1 1 2 1 1													
CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
Cos		Programme Specific Outcome (POs)													
Cos		CO	1		CO	2		C	03		C	CO4		CO5	
PSO1		2			1				3			3		3	
PSO2		2 1 3 3 3													
PSO3		2			1				3			3		3	

Course Assessment Methods										
Direct										
1. Continuous Assessment Test I, II & Model										
2. Assignment										
3. End Semester Examinations										
Indirect										
1. Course End Delivery										

	Content of the Syllabus											
	Complexometric titrations	Periods	30									
Unit - I	Estimations of Ca, Cu, Mg, Ni & Zn using complexometric t	itration										
	Qualitative Analysis	Periods	45									
Unit - II	Qualitative analysis employing semi micro methods and common cations and ions of the following less familia tungsten, selenium, tellurium, cerium, thorium, titanium, ziro and lithium.	ar elements N	Iolybdenum,									
	Total Periods75											

Text	Books								
1	V.V. Ramanujam, Inorganic semi micro qualitative analysis, The National Publishing Co., Ltd., Madras								
1	2002.								
Refe	rences								
1	Vogel, Inorganic quantitative analysis, Pearson Education 2001.								
E-Re	ferences								
1	http://lib.hku.hk/Press/9622092128.pdf								
2	http://www.kvsunjuwan.com								
3	http://science-blogs.ucoz.com/resources/notes/msc/pract1/CationGuide.pdf								

						Sigr	nature of I	BOS	Chairman			
HORAL INCOME	VIVEKANAN	DHA COLLEGE OF AR (AUTONO) Elayampalayam, Tiruc	MOU	S)			OR WOMI		ISO 9001:2008 TUVINHINING CERTFIED 0 9195/29687			
Programme	M.Sc	Programme Code			PCI	H	Regulati	ons	2020-2022			
Department	Chemistry Semester 2											
Course Code	C	ourse Name		erio W	ds eek	Credit	Max	imun	n Marks			
			L	Т	Р	С	CA	ESI	E Total			
20P2CHCP03		CORE PRACTICAL II: Physical Chemistry Practical - I40440601										
Course Objectives	physical and ch	inciples of phase rule, end memical properties of the to work with instruments	give	n co	ompo	ounds and						
POs		PROGRA	MM	E ()UT(COME						
PO 1		Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.										
PO 2	Ability to express	thoughts and ideas effective confidently share ones views a	ely in					e with	others using			
PO 3		y analytic thought to a body ne basis of empirical evidence							ce arguments			
PO 4		blate from what one has learn ems rather than replicate curr										
PO 5	arguments of other	e the reliability and relevant s analyse and synthesise data	from a	var	iety of	f sources dra	aw valid Co	nclusio	ons.			
PO 6		and capability for asking rele to recognise cause and effect			•			•••	U U			
PO 7	2	fectively and respectfully with oup and act together as a group					•					
PO 8	ideas, evidence and	interpret and draw conclusion d experiences from an open m	inded	and	reasor	ed perspect	ive.					
PO 9	-	to lived experiences with self										
PO 10	variety of relevant	ICT in a variety of learning s information sources and use a	pprop	riate	softw	are for anal	ysis of data.					
PO 11	through to complet					-			age a project			
PO 12		e of the values and beliefs of n										
PO 13	ethical issue from	e moral ethical values in con- multiple perspectives and use	ethical	pra	ctices	in all work.						
PO 14		pping out the tasks of a team ilding a team who can help ac			-		-	tion fo	ormulating an			

PO 15	Ability to acquire knowledge and skills including learning how to learn that are necessary for participating in learning activities throughout life through self paced.
-------	---

COs	COURSE OUTCOME
CO 1	Students will understand the breadth and concepts of physical chemistry.
CO 2	Students will develop skills in procedures and instrumental methods applied in analytical and practical tasks of physical chemistry
CO 3	Students will plan, conduct, review and report the experiment.
CO 4	Students will analyze the possible errors in phase studies.
CO 5	Students will evaluate the adsorption mechanism with time.
Pre-requisites	

					KNO	OWLE	DGE	LEVE	LS						
1.R	Reme	mberin	i g, 2.U i	ndersta						, 5.Eva	luating	g, 6.Syr	nthesiz	ing	
	((3/2/1 i	ndicat	es the st				Aappir on, 3-s	-	2-med	ium. 1	-weak)	1		
Cos		(0/=/= 1			KLs	01 001		011,0 5	PO				KI	_S	
	1				2				PO	1			3		
CO	1				2				PO	2			1		
СО	2				1				PO				4		
					1				PO				2		
СО	3				3				PO				6		
									PO PO				6		
CO	4				2			PO 8				1			
									PO			1			
CO	5			6 PO 10 4											
DCC			KLs						PO 1	1			5		
PSC)s				KLS			PO 12 3							
PSO					3				PO 1				1		
PSO					4				PO 1				6		
PSO	3				1			•	PO 1	5			1		
		(3/2/1;	ndicat	es the st		CO/P			trong	2 mod	ium 1	wook)			
		(3/2/11	nuicat		irengu						iuiii, 1	-wcak)			
COs		DOC	DO2	DO4	DOS			amme Outcome (POs) PO7 PO8 PO9 PO10 PO11 PO12 PO13 PO14 PC						DO15	
CO1	PO1 2	PO2 2	PO3	PO4 3	PO5	PO6	PO7				2	2	1	2	
						-				1	1				
CO2	1	3	1	2	1	1	2	3	3	1	1	1	3	1	3
CO3	3	1	2	2	1	1	2	1	1	2	1	3	1	1	1
CO4	2	2	1	3	1	1	1	2	2	1	1	2	2	1	2

CO	5	1 1 1 1 3 3 1 1 1 1 2 1 1 3 1																	
CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)																			
Cos		Programme Specific Outcome (POs)																	
Cos		CO	1		CO	2		C	03		C	CO4			CO5				
PSO1		2			2	2 3 2 1													
PSO2		1	1 1 2 3 2																
PSO3		2			2			1	1			1		1					

Course Assessment Methods										
Direct										
 Continuous Assessment Test I, II & Model Assignment End Semester Examinations 										
Indirect										
1. Course End Delivery										

	Content of the Syllabus										
	Electrical Experiments	Periods	35								
Unit - I	 i) Potentiometric titration a) HCl vs NaOH b) CH₃COOH vs NaOH c) HCl, CH₃COOH acids) d) KCl vs AgNO₃ e) HI vs AgNO₃ ii. Determination of solubility product a. Galvanic cell method. b. Concentration cell method. iii. Estimation of mixture of halides (HI, KCl vs AgNO₃) iv. Determination of E^o, Zn²⁺/Zn and estimation of Zn²⁺. 	H vs NaOH (mi	xture of								
Unit - II	 v. Determination of hydrolysis constant (for aniline hydroch Non- Electrical Experiments i. Phase rule studies a) Two component systems-Simple Eutectic formation b) Phase diagram of a two-component system forming of melting point). c) Phase diagram of a three component liquid system (with (Toluene-Water- Acetic acid). ii. Heat of solution of benzoic acid in water. iii. Varification of Eroundlich adaption in the provide the system (A dopention) 	Periods compound (wit one partially n	niscible pair)								
	iii. Verification of Freundlich adsorption isotherm (Adsorpti Charcoal). Total Periods		75								

Text	Text Books										
1	A .O. Thomas, Practical Chemistry, Scientific Book Centre, Cannanore (2003).										
2	V. Venkateswaran, R. Veeraswamy and A. R. Kulandaivelu, Basic Principles of Practical Chemistry, New Delhi, S.Chand & Co, (1995).										
Refe	References										
1	B Viswanathan, P.S. Raghavan, Practical Physical Chemistry, Viva Books Private Limited, (2005).										
E-Re	ferences										
1	http://nptel.ac.in/courses/Webcourse-contents/IISc-BANG/Material Science										
2	http://www.cffet.net/sia-e/2_Pot_titr.pdf										

HONEN ENPONERMENT	VIVEKANANI	DHA COLLEGE OF A (AUTO) Elayampalayam, T	NOM	OUS)		DR WOMI		ISO 8001:008 CONTRACT CONTRACT				
Programme	M.Sc	Programme Code	PCH Regulations 2020-2										
Department	Cł	emistry	Semester 1										
Course Code	Cou	rse Name		erioc We		Credit	Max	timun	n Marks				
			L	Т	Р	С	CA	ESI	E Total				
20P1CHE01	Elective: Nanoscience an	d Nanotechnology	4			4	25	75	100				
Course Objectives	1. To introduce the students to the world of nanotechnology. 2. To enrich the knowledge of students in novel synthetic methods to prepare nanoparticles.												
POs	PROGRAMME OUTCOME												
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that												
PO 2	form a part of an undergraduate programme of study. Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.												
PO 3	Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications												
PO 4		blate from what one has leaders rather than replicate											
PO 5	arguments of other	e the reliability and rele s analyse and synthesise d	ata fro	ma	varie	ty of sources dra	aw valid Co	nclusio	ons.				
PO 6		and capability for asking to recognise cause and eff											
PO 7	-	ectively and respectfully up and act together as a g					-						
PO 8	ideas, evidence and	interpret and draw conclu l experiences from an ope	n mind	led a	nd re	asoned perspect	ive.		-				
PO 9	-	to lived experiences with				-			-				
PO 10	variety of relevant	CT in a variety of learni information sources and u	se app	ropri	ate s	oftware for anal	ysis of data	•					
PO 11	through to complet						1 0		age a project				
PO 12	-	of the values and beliefs		-					-				
PO 13	ethical issue from 1	moral ethical values in nultiple perspectives and	use eth	ical	pract	ices in all work.							
PO 14	inspiring vision bu	pping out the tasks of a ilding a team who can help	p achie	ve th	e vis	sion motivating.	-		-				
PO 15		nowledge and skills inclues throughout life through	-		ng ho	ow to learn that	are necessar	y for p	participating				

COs	COURSE OUTCOME
CO 1	Students will acquire knowledge on various synthetic methods of nanoparticles and techniques to characterize them.
CO 2	Students will be able to understand various types of nanoparticles and their properties.
CO 3	Students learn about the promising applications of nanotechnology.
CO 4	Students will analyze the properties of various dimensional nanoparticles.
CO 5	Students will evaluate the recent advancements in nanotechnology.
Pre-requisites	

					KNO	OWLE	DGE	LEVE	LS						
1.	Reme	mberir	ng, 2.U	ndersta	nding,	3.App	olying,	4.Ana	lyzing	, 5.Eva	luating	g, 6.Syı	nthesiz	ing	
		(2/)/1;	ndicat	es the st			/ KL N		-	2 mod	i 1	week			
C	os	(3/2/11	nuicat		KLs		Telatio	011, 3-8	PO:		iiuiii, 1	-wcak)	KI		
	os				NLS				PO				3		
CC	D 1				2				PO				4		
									PO				1		
CO	02				3				PO				2		
C(1				PO	5			5		
U	03				1				PO	6			5		
C	D 4				1				PO	7			3		
	J T				1				PO				6		
CO	05		1						PO			4			
									PO 1			1 3			
PS	Os		KLs					PO 11 PO 12				5			
PS	0.1				3				PO 1 PO 1			2			
	$\frac{01}{02}$				4				PO 1			4			
	03				2				PO 1			6			
						CO / P	O Maj	pping							
		(3/2/1 i	ndicat	es the st	trength	n of co	rrelati	on, 3-s	trong,	2-med	lium, 1	-weak))		
COs						Pro	gramn	ne Out	come	(POs)					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	2	1	2	3	1	1	2	1	1	2	2	1	3	1	1
CO2	3	2	1	2	1	1	1	1	2	1	3	1	2	2	1
CO3	1	1	3	2	1	1	1	1	1	3	1	1	2	1	1
CO4	1	1	3	2	1	1	1	1 1 1 3 1					2	1	1
CO5	1	1	3	2	1	1	1	1	1	3	1	1	2	1	1
	•	(2/0/	1 :	4 1			SO Ma			· · · · · ·	1		•		
		(3/2)		ates the	suengti	ii oi co	relatio	m, 5-st	rong, i	2-mean	um, 1-1	weak)			

Car		Programme Specific Outcome (POs)													
Cos	CO1	CO2	CO3	CO4	CO5										
PSO1	2	3	1	1	1										
PSO2	1	2	1	1	1										
PSO3	3	2	2	2	2										

Course Assessment Methods

Direct

1. Continuous Assessment Test I, II & Model

2. Assignment3. End Semester Examinations

Indirect

1. Course End Delivery

	Content of the Syllabus										
	Introduction to Nanoscience	Periods	15								
Unit - I	Unit - I Introduction - history - nanoscale & nanotechnology - nanotech on nanoscience - nanocomposites - zero dimensional nanomaterials - one nanomaterial - two dimensional materials - three dimensional nanomaterial global scenario in nanotechnology.										
	Synthesis of Nanomaterials	Periods	15								
Unit - II	Physical methods - Physical Vapour Deposition (P Thermolysis-sonochemical approach, CVD, Electrodeposit Thermal decomposition of complex precursors, Re Hydrothermal, Solvothermal method.	ion. Precipitati	on methods-								
	Characterizations of nanomaterials	Periods	15								
Unit - III	X-ray Diffraction (XRD), Thermal gravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), UV spectroscopy, Photo Electron Spectroscopy (XPS). Electron Microscopy: Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM). Morphological: SAED analysis, Atomic Force Microscopy (AFM).										
	Properties and Applications of Nanaoparticles	Periods	15								
Unit - IV	Size dependence of Properties - Chemical Reactivity – S Electronic energy levels - Bohr radius. Optical properties - Quantum size effects. Magnetic properties - size dependent J and saturation magnetization. Applications: Medicine, environmental protection, food and agriculture, energy, na Risks of nanomaterials.	surface plasmo properties such Nanoelectronic	on resonance, as coercivity cs, batteries,								
	Nano biomaterials	Periods	15								
Unit - V Introduction: Biological building blocks - size of building blocks and nanostructur protien nanoparticles. Nucleic Acids - DNA Double Nanowire, Genetic code protein synthesis - Biological nanostructures - Multilayer films. Biopolyn Biomaterials.											
Total Periods 75											

Text	Books
1	Mark Ratner, Daniel Ratner, Nanotechnolgy, Pearson Education, Inc. 2007
2	G.Schmid Eds, Nanoparticles, Wiley-VCH, 2004.
3	G.HodesEds, Electrochemistry of Nanomaterials, Wiley-VCH, 2001.
4	M.Kohler, W.Fritzsche, Nanotechnology, Wiley-VCH, 2004
Refe	rences
1	K.L.Choy, Process principles and applications of novel and cost- effective ESAVD based methods, World Scientific Publishing, Singapore, 2002
2	A.Jones and M.Mitchell, Nanotechnology-Commercial Opportunity, Evolution Capital Ltd. London, 2001.
3	Mick Wilson, Kannangara, Geoff Smith, Michelle Simmons and Burkhard Raguse, Nanotechnology
	basic science and emerging technologies, overseas press
4	Charles P. Poole, Jr., Frank J. Owens, Introduction to Nanotechnology, Wiley reprint 2012
E-Re	ferences
1	nptel.ac.in/courses/103103033/module9/lecture1.pdf
2	http://folk.ntnu.no/fredrol/Nanomaterials%20and%20Nanochemistry.pdf
3	https://www.ceitec.eu/nanoparticles-for-biomedical-applications/f33079
4	nptel.ac.in/courses/103103033/module9/lecture1.pdf
5	http://folk.ntnu.no/fredrol/Nanomaterials%20and%20Nanochemistry.pdf

HONEN ENDOVERNENT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.												
Programme	M.Sc	Programme Code	PCH Regulations 2020-20										
Department	Chemistry Semester 1												
Course Code	Co	ourse Name		erio r W		Credit	Maximum			n Marks			
			L	Т	Р	С	CA	ES	E	Total			
20P1CHE02	Elective: Instrumental M	ethods of Analysis	4			04	25	75	5	100			
Course Objectives	1. To enable the students to handling of instruments. Acquire the fundamentals and principles of spectroscopic techniques. Enhance the knowledge in thermo and electro analytical methods.												
POs	PROGRAMME OUTCOME												
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that												
PO 2	Ability to express	form a part of an undergraduate programme of study. Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.											
PO 3		y analytic thought to a body ne basis of empirical evidence								guments			
PO 4		plate from what one has learn ems rather than replicate curr			-	-							
PO 5	arguments of other	e the reliability and relevan s analyse and synthesise data	from a	ı vari	iety of	f sources dra	aw valid Co	nclusi	ons.				
PO 6	articulating ability	and capability for asking rele to recognise cause and effect	relatio	nshi	ps def	ine problem	s formulate	hypot	these	s.			
PO 7	•	fectively and respectfully with up and act together as a group					-						
PO 8	ideas, evidence and	interpret and draw conclusion l experiences from an open m	inded	and 1	reasor	ed perspect	ive.		-				
PO 9		to lived experiences with self											
PO 10		CT in a variety of learning s information sources and use a					-		ate a	nd use a			
PO 11	through to complet					-			nage	a project			
PO 12	-	of the values and beliefs of n	-			-							
PO 13	-	e moral ethical values in con- nultiple perspectives and use		-			-	argun	nent	about an			
PO 14	inspiring vision bu	pping out the tasks of a team ilding a team who can help ac	hieve	the v	vision	motivating.	-			-			
PO 15		nowledge and skills including throughout life through self	-	-	how to	b learn that a	are necessar	y for p	partic	cipating			

COs	COURSE OUTCOME
CO 1	Students will understand the fundamentals of molecular spectroscopy.
CO 2	Students will learn about the concepts of electronic spectroscopy.
CO 3	Students will apply their knowledge in absorption and emission spectroscopy.
CO 4	Students will analyze the various electro analytical methods.
CO 5	Students can evaluate the thermal stability of various materials using TGA.
Pre-requisites	

Г

KNOWLEDGE LEVELS																
1.F	1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing															
	CO / PO / KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
		3/2/11	ndicat			of col	rrelatio	on, 3-s	_		ium, I	-weak)				
Co	s]	KLs				PO				KI			
СО	1				4				PO				5			
									PO				2			
СО	2				2				PO				2			
									PO				1			
СО	3				3				PO				1			
									PO				5			
CO	4				5				PO			3 2				
								PO 8 PO 9				1				
CO	5		1					PO 10				3				
								PO 11				4				
PSC)s		KLs					PO 12				6				
PSO	1				3			PO 12					5			
PSO					4				PO 1			1				
PSO					1			PO 15					4	4		
					(CO/P	O Maj	pping								
	((3/2/1 i	ndicat	es the st	trength	of co	rrelati	on, 3-s	trong	, 2-med	ium, 1	-weak))			
GO						Prog	gramn	ne Out	come	(POs)						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15	
CO1	2	1	1	1	1	2	2	1	1	2	3	1	2	1	3	
CO2	1	3	3	2	2	1	2	3	2	2	1	1	1	2	1	
CO3	1	2	2	1	1	1	1	2 1 3		3	2	1	1	1	2	
CO4	3	1	1	1	1	3	1	1	1	1	2	2	3	1	2	
CO5	1	2	2	3	3	1	1	2	3	1	1	1	1	3	1	

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)							
Programme Specific Outcome (POs)								
Cos	CO1	CO2	CO3	CO4	CO5			
PSO1	2	2	3	2	1			
PSO2	1	1	2	3	2			
PSO3	2	2	1	1	1			

Course Assessment Methods			
Direct			
1. Continuous Assessment Test I, II & Model			
2. Assignment			
3. End Semester Examinations			
Indirect			
1. Course End Delivery			

	Content of the Syllabus					
	Fundamentals of spectroscopy	Periods	15			
Unit - I	Electromagnetic spectrum: Electromagnetic radiation - pro- interaction of light with matter - types of spectrosco spectroscopy -Absorption and Emission spectra.					
T 1	UV And IR spectroscopic techniques UV-Visible spectroscopy - Principle, instrumentation	Periods - photocolor	15 rimeter and			
Unit - II	spectrophotometer. Infrared spectroscopy - principle, in monochromator - cell - sampling techniques – detector and r		- source -			
	Atomic absorption and emission spectroscopic techniques	Periods	15			
Unit - III	Flame Spectroscopy, Atomic Absorption Spectroscopy instrumentation and application. Luminescence Sp Spectroscopy: Principle, theory, instrumentation and applica	ectroscopy, 1	iple, theory, Fluorescence			
	Electro analytical methods	Periods	15			
Unit - IV	Polarography - principle - concentration polarization- dr advantage and disadvantage - convection, migration and c equation(derivation not needed) and its significance - Ar uses.	liffusion currer	nts - Illkovic			
	Thermo analytical methods	Periods	15			
Unit - V	Principles and instrumentation thermo gravimetric analysis analysis - characteristics and curves - factors affecting TGA oxalate monohydrate and silver nitrate- thermometri applications.	A and DTA cur	ves- calcium			
	Total Periods75					

Text	Books
1	Gopalan .R, Elements of analytical chemistry, Sultan Chand, 2009.
2	Kaur, Instrumental methods of chemical analysis.
Refer	ences
1	Khopkar S.M, Analytical Chemistry, New Age International, 2006.
2	Skog.A and West .M, Fundamentals of analytical chemistry, Saunders College Publications, 2004.
3	Sharma B.K, Instrumental methods of chemical analysis God Publications, 2007.
4	Usharani. S, Analytical Chemistry, Macmillan, 2008.
E-Re	ferences

Signature of BOS Chairman

MOREN ENPOYERMENT	VIVEKANANI	OHA COLLEGE OF AR (AUTONO) Elayampalayam, Tiruc	MOU	S)			DR WOMI		TÜVRheinland	ISO 8001-2008
Programme	M.Sc Programme Code PCH Regulations								2020-2022	
Department	Chemistry Semester									2
Course Code	Co	ourse Name		erio : W		Credit			m Marks	
			L	Т	Р	С	CA	ES	E	Total
20P2CHE03	Elective: Electrochemistr	y and Photochemistry	5			04	25	75	5	100
Course Objectives	electrochemistry	he basic concepts electr and electrochemical cell nrich the students knowled	s. 3.	То	acqu	ire knowle	edge abou			
POs		PROGRA	MM	E C)UT(COME				
PO 1		strating comprehensive known dergraduate programme of st		and	unde	rstanding o	of one or m	ore di	sciplin	nes that
PO 2		thoughts and ideas effective confidently share ones views a						e with	other	s using
PO 3	Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications									
PO 4		Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non familiar problems rather than replicate curriculum content knowledge and apply ones learning to real life situations								
PO 5	arguments of other	e the reliability and relevan s analyse and synthesise data	from a	vari	ety of	sources dra	aw valid Co	nclusi	ons.	
PO 6		A sense of inquiry and capability for asking relevant appropriate questions problematising synthesising and articulating ability to recognise cause and effect relationships define problems formulate hypotheses.								
PO 7		Ability to work effectively and respectfully with diverse teams facilitate cooperative or coordinated effort on the part of a group and act together as a group in the interests of work efficiently as a member of a team.								
PO 8	Ability to analyse interpret and draw conclusions from quantitative qualitative data and critically evaluate ideas, evidence and experiences from an open minded and reasoned perspective.									
PO 9		to lived experiences with self								
PO 10	Capability to use ICT in a variety of learning situations demonstrate ability to access evaluate and use a variety of relevant information sources and use appropriate software for analysis of data.									
PO 11	Ability to work independently, identify appropriate resources required for a project and manage a project through to completion.									
PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective.									
PO 13	-	moral ethical values in con- nultiple perspectives and use		-			-	argun	nent al	bout an
PO 14	inspiring vision bu	pping out the tasks of a team ilding a team who can help ac	hieve	the v	ision	motivating.	-			-
PO 15		Ability to acquire knowledge and skills including learning how to learn that are necessary for participating n learning activities throughout life through self paced.								

COs	COURSE OUTCOME
CO 1	Students will understand the basic principles of electrochemistry and different types of electrochemical cells.
CO 2	Students will learn about the basic concepts of photochemistry and their importance in various fields.
CO 3	Students will apply their knowledge of photochemistry in the process taking place in biosystems.
CO 4	Students will analyze the various electrokinetic processes.
CO 5	Students will evaluate the theories of electrical double layer theories.
Pre-requisites	

	KNOWLEDGE LEVELS														
1.1	1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing														
								/appir	0			•			
		3/2/11	ndicat	es the st		of col	rrelati	on, 3-s			ium, I	-weak)			
Co	S]	KLs				PO				KI		
СО	1				2				PO				2		
									PO PO				5		
CO	2				2				PO				5		
									PO				4		
CO	3				3				PO				6	,	
СО	4				4				PO	7			2	,	
	4				4			PO 8					4	-	
СО	5				5			PO 9				1			
	5		5				PO 10				3				
PSO	Os		KLs				PO 11				3				
PSC	1		3					PO 12 PO 13				1			
PSC			4					PO 14					6		
PSC				1				PO 15				3			
						CO/P	O Ma	pping		-					
	((3/2/1 i	ndicat	es the st	rength	of co	rrelati	on, 3-s	trong,	2-med	lium, 1	-weak))		
						Pro	gramn	ne Out	come	(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO4	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO5	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1
		(3/2/1	l indica	ates the			SO Ma rrelatio		rong, 2	2-mediu	ım, 1-v	weak)			

Cas	Programme Specific Outcome (POs)							
Cos	CO1	CO2	CO3	CO4	CO5			
PSO1	2	2	3	2	1			
PSO2	1	1	2	3	2			
PSO3	2	2	1	1	1			

Course Assessment Methods
Direct
1. Continuous Assessment Test I, II & Model
2. Assignment
3. End Semester Examinations
Indirect
1. Course End Delivery

Content of the Syllabus							
	Electro chemistry - I	Periods	15				
Unit - IIntroduction to electrochemical cells-Types-Chemical cells with and without transferences-Concentration cells- types- electrode concentration cells-electrolytic concentration cells - with and without transferences - liquid junction - salt bridge - derivation- Electrical double layer, theories of double layer -Electrokinetic phenomena: Electrocapillary phenomena, electro-capillary curve-electrochromism- electrochemical noise.							
	Electro chemistry - II	Periods	15				
Unit - II	Debye - Huckel theory of inter-ionic attraction, ionic atmosphere, time of relaxation, relaxation and - phoretic effects, Derivation of Debye-Huckel-Onsagar equation and its validity for dilute solutions at appreciably concentrated solutions. Debye-Falkenhagen and Wein effects. Mean ionic activity coefficients and their determination. Debye – Huckel Bronsted equations - Derivation of Debye-Huckel limiting law, Quantitative and qualitative verification, ion association and Bjerrum theory.						
	Photochemistry	Periods	15				
Unit - III	Absorption of light and nature of electronic spectra, electronic nules, photodissociation, prediction reactions: photoreduction, photo-oxidation, photoding substitution, photoisomerization – transition metal comprenvironment: Green house effect. Photo physical phenomerical phenomerical phenomerical phenomerical complexity rule, life time of electronically excited state diagram. Stern-Volmer equation, critical energy transfer efficiency, examples and analytical significance, bimolecula	dissociation, pl nerization, pl plexes - photo- ena: Electronic states, designat , construction distances, end	notochemical notochemical chemistry of structure of ion based on of Jablonski ergy transfer				
Unit - IV	Organic Photochemistry	Periods	15				

	Fundamental concepts - Photooxidation reaction (Formation of Peroxy compounds) – Photoreduction of ketones and enones, Norrish type I and II reactions-Photochemistry of Alkenes, Dienes and Aromatic compounds - Photoisomerisation – Cis and Trans isomerization - Photoaddition reaction-Paterno-Buchirreaction-Barton reaction Photo– Fries rearrangement and photorearrangement of 2,5-Cyclohexadienones.						
Unit - V	Applied PhotochemistryPeriodsPhotochemistry reaction in the atmosphere - oxygen and ozone - nitr chlorofluoro carbons - organic compounds - chemistry of vision - p photosensitisers-ultraviolet screening agents - optical bleach - pho photoimaging - photochemistry of polymers - Photo polymerization: ima photodegradation and photostabilization-photosynthesis - photochemistry redox reactions- solar energy conversion and storage.	hotography - tochronism - ging, curing -					
	Total Periods	75					

Text	Books
1	K. K. Rohatgi - Mukharjii, Wiley Eastern., Fundamentals of Photochemistry, New age international., P
1	Ltd., New Delhi 2011
2	S. Glasstone, D. Van Nostrand., An introduction to Electrochemistry., Affiliated East west press Pvt., Ltd., New Delhi, 2004
3	Gurdeep Raj, Advanced Physical Chemistry, Go Publishing House.1999
4	Jagdamba singh, Jaya singh, Photochemisty & Pericyclic Reaction, New age international publishers 2012
Refe	rences
1	M.S Yadav Electrochemistry- Anmol Publication Pvt Ltd. New Delhi, 2011
2	J.G.Calverts & J.N.Pitts - An introduction to Photochemistry, New age international p Ltd., New Delhi.
2	Wells.
E-Re	ferences
1	http://www.engr.uconn.edu/~jmfent/CHEG320_electrochemistry%20lectures.pdff33079
2	https://web.stanford.edu/group/burnslab/meetings/13_01_24_QOphotochemistry.pdf

Signature of BOS Chairman

A LONG THE L
Ta Handrey Handrey
WOMEN EMPOWERMENT

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.

WOMEN EMPOWERNENT			U								
Programme	M.Sc	Programme Code			PC	H	Regulati	ons	2020-2022		
Department	(Chemistry				Semester	r		2		
Course Code	C	ourse Name		eric : W	ods Teek	Credit	Max	imuı	m Marks		
			L	Т	Р	С	CA	ES	E Total		
20P2CHE04	Elective: Organic Spectroscopy		4			04	25	75	5 100		
Course Objectives							Acquire the fundamental vledge in mass, NMR, IF				
POs		PROGRAMME OUTCOME									
PO 1		nstrating comprehensive know ndergraduate programme of st		and	l unde	erstanding o	of one or m	ore d	isciplines that		
PO 2	Ability to express	thoughts and ideas effective confidently share ones views a	ely in					with	n others using		
PO 3		Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications									
PO 4	Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non familiar problems rather than replicate curriculum content knowledge and apply ones learning to real life situations										
PO 5	-	te the reliability and relevant rs analyse and synthesise data				-	-				
PO 6		and capability for asking rele to recognise cause and effect									
PO 7	-	fectively and respectfully with oup and act together as a group					-				
PO 8		interpret and draw conclusion d experiences from an open m		-		-		l criti	cally evaluate		
PO 9		to lived experiences with self									
PO 10		ICT in a variety of learning s information sources and use a							ate and use a		
PO 11	through to comple					-			nage a project		
PO 12	-	e of the values and beliefs of n	-			-					
PO 13		e moral ethical values in con- multiple perspectives and use		-			•	argur	nent about an		
PO 14	inspiring vision bu	pping out the tasks of a team ilding a team who can help ac	hieve	the v	vision	motivating.	-		-		
PO 15	• •	knowledge and skills including es throughout life through self	-	•	how t	o learn that	are necessar	y for	participating		

COs	COURSE OUTCOME
CO 1	Students will understand the basic principles of UV visible spectroscopy.
CO 2	Students will learn about the basic concepts of IR spectroscopy.
CO 3	Students will apply their knowledge on interpretation of mass spectrum.
CO 4	Students will analyze the chemical shift in molecules using NMR.
CO 5	Students will evaluate the types of spectra.
Pre-requisites	

KNOWLEDGE LEVELS															
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing															
CO / PO / KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
Cos KLs POs KLs															
				-					PO				5		
CO	1				2				PO	2			2		
СО	2				3				PO	3			2		
	2				5				PO				1		
СО	3				2				PO				1		
									PO				5		
СО	4				1			PO 7 PO 8				2			
	_		4				PO 9				1				
CO	5						PO 10				3				
PSC)¢		KLs				PO 11				4				
							PO 12				6				
PSO			3				PO 13 PO 14				5				
PSO PSO			4				PO 14 PO 15				4				
150	5					CO/P	O Ma	Mapping				-			
	(3/2/1 i	ndicat	es the st					trong	2-med	ium, 1	-weak))		
60						Pro	gramn	ne Out	come	(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	1	3	3	2	2	1	2	3	2	2	1	1	1	2	1
CO2	1	2	2	1	1	1	1	2	1	3	2	1	1	1	2
CO3	1	3	3	2	2	1	2	3	2	2	1	1	1	2	1
CO4	1	2	2	3	3	1	1	2	3	1	1	1	1	3	1
CO5	2	1	1	1	1	2	2	1	1	2	3	1	2	1	3

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
0		Pro	gramme Specific Out (POs)	come					
Cos	CO1	CO2	CO3	CO4	CO5				
PSO1	2	2	3	2	1				
PSO2	1	1	2	3	2				
PSO3	2	2	1	1	1				

Course Assessment Methods						
Direct						
 Continuous Assessment Test I, II & Model Assignment End Semester Examinations 						
Indirect						
1. Course End Delivery						

Content of the Syllabus									
	UV Visible Spectroscopy	Periods	15						
Unit - IFrank-condon principle, Types of electronic transitions, Chromophores & Auxochromes, absorption and intensity shifts, Factors influencing positions & intensity of absorption bands, Absorption spectra of dienes, polyenes & unsaturated carbonyl compounds, Woodward - Fieser rules.									
	IR Spectroscopy	Periods	15						
Unit - II	it - IIVibrational frequencies & factors affecting them, identification of functional groups, Finger Print Region, Significance of Far IR region.								
	Mass Spectrometry	Periods	15						
Unit - III	Principle - EI, CI & FAB - Base peak, isotopic peaks, metastable peak, parent peak, Fragmentation - Nitrogen, even electron rule and pattern, McLafferty rearrangement, Retro – Diel's Alder reaction fragmentation pattern of hydrocarbons, alcohols, aldehydes and ketones.								
	NMR Spectroscopy	Periods	15						
Unit - IV	Basic principles of NMR experiments - CW & FT NMR - ¹ H NMR - Chemical Shift & Coupling constant - Factors influencing Proton Chemical Shift & Proton - Proton Coupling constant, AX & AB spin system - Spin decoupling - Nuclear Overhaust effect - Chemical exchange. ¹³ C NMR chemical shift & factor affecting ¹³ C Chemical shift.								
	Identification of organic compounds	Periods	15						
Unit - V	Identification of organic molecules using UV, IR, NMR and Mass spectroscopic techniques.								
	Total Periods		75						

Text	Text Books						
1	Finar .I.L, Organic Chemistry, Vol-I&II, Fifth Edition, ELBS Publication, 2006.						
2	Sharma. Y.R, Elementary Organic Spectroscopy, Fifth Edition, S. Chand Publication, 2013.						
3	Jag mohan, Organic Spectroscopy: Principles and Applications, Second Edition, Alpha Science International Ltd., Harrow, U.K.						
Refei	rences						
1	Dyer.J, Applications of Organic Spectroscopy, Prentice & Hall of India Pvt Ltd., NewDelhi, 1980.						
2	Mukerjee.S.M & Singh.S.P, Organic Reaction Mechanism, McMillan India Ltd., Chennai, 1990.						
3	Kemp. W, Organic Spectroscopy, Mcmillan Ltd., 2001.						
E-Re	E-References						

Signature of BOS Chairman

QP CODE-20P1CH01

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN

(Autonomous)

DEPARTMENT OF CHEMISTRY

MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc. Chemistry	CONCEPTS OF ORGANIC CHEMISTRY AND STEREOCHEMISTRY	Ι

Time: 3 Hr.

Max.Marks : 75

1	Prec	lict the IUPAC name of the following o	compo	und.	K1	CO-1		
	A	1-cyclohexyl-4-isothiocyanato- benzene	В	1-cyclohexyl-4-thiocyanato-benzene				
	C	4-cyclohexyl-1-isothiocyanato- benzene	D	4-cyclohexyl-1-thiocyanato-benzene				
2	Whi	Which of the following statement about cinnoline is correct?						
	A	Heterocyclic containing N & S and antiaromatic	В	Heterocyclic containing N & S and aromatic				
	С	Heterocyclic aromatic containing two N atoms	D	Alicyclic containing two nitrogen atoms				
3.	Syd	none are five-membered pseudo-aroma	tic he		K1	CO-1		
	A	six-membered, pseudo-aromatic heterocyclic molecule	B	five-membered, pseudo-aromatic heterocyclic molecule				
	С	six-membered, aromatic heterocyclic molecule	D	five-membered, aromatic heterocyclic molecule				
4	An	An example of homoaromatic compound is						
	Α	cycloheptatrienyl cation	В	tropylium cation	K 1	CO-1		
	C	cyclopropenyl cation	D	cyclooctatrienyl cation		•		

5		ch of the following reaction coordinat Me ₂ Cl + OH ⁻ > PhCMe ₂ C			K1	CO-2
	A	Energy Reaction Co-ordinate	B	Energy Reaction Co-ordinate		
	С	Energy Reaction Co-ordinate	D	None of the above		
6	Whie	ch carbocation is the most stable?	i.	L	K1	CO-2
	A		B			
	C		D			
7	Whie	ch one among the following carbocati	ons has	the longest half-life?	K 1	CO-2
	A	⊳-ċ-⊲ ∠	В	d→-t→ O→-t→ O→-t→ O→-t→ O→-t→ O→-t→ O→-t→ O→-t→ O→-t→ O→-t→ O→-t→ O→-t→ O→-t→ O→-t→ O→-t→ O→-t→ O→-t→ O→ O→-t→-t→-O→ O→-t→-t→-O→ O→-t→-t→- O→-t→-t→-t→-t→+ O→-t→+ O→-t→+ O→-t→+ O→-t→+ O→-t→+ O→+t→+ O++t→		
	C		D	H ₃ C-C+CH ₃ CH ₃		
8	Whie	ch of the following method can be use	ed to de	termine the reaction mechanisms?	K1	CO-2
	A	Intermediate trapping and cross experiments	В	Isotopic labelling		
	C	stereo chemical evidence	D	All of the above		

9		ch of the following compound shows ous ethanol?	the co	rrect decreasing order of solvolysis with	K 1	CO-3
	Ι	. $\underset{\mathbf{X}}{\overset{\mathbf{X}}{\longrightarrow}}$ II.	(III	. X IV. X		
	Α	III > II > I > IV	В	III > II > IV > I		
	C	II > III > IV > I	D	III > I > IV > II		
10	Exar	nples of ambient nucleophile and amb	ient su	bstrate are, respectively	K1	CO-3
	A	Thiocyanate ion and 1,3- dichlorobutane	В	Nitrate ion and 1,3-dimethylbutane		
	C	Thiocyanate ion and 1,3- dimethylbutane	D	Nitrate ion and Thiocyanate ion		
11	The	condition for aromatic nucleophilic are	omatic	substitution reaction is/are	K1	CO-3
	A	electron-poor aromatics	В	good nucleophiles		
	С	good leaving group	D	all of the above		
12		is a method for producing 2-amin line with sodium amide	opyric	ine derivatives by the reaction of	K 1	CO-3
	Α	Gattermann reaction	В	Chichibabin reaction		
	C	Gattermann Koch reaction	D	Reimer – Tiemann reaction		
13	Whi	ch is most reactive in electrophilic sub	stitutio	on?	K1	CO-4
	A	CH ₂ CH ₃	В	OCH3		
	C	O I CCH ₃	D	CI		
14		ch is obtained as the main mononitration butyl-3-methoxybenzene) with HNO ₃ -		duct upon reaction of <i>m-t</i> -butylanisole ₄ ?	K1	CO-4
	A	O ₂ N O ₂ N O ₂ N O ₂ N O ₂ N	В	O ₂ N OCH ₃		

	C	C(CH ₃) ₃	D	С(СН ₃) ₃		
				NO ₂		
		°OCH₃		∽ °OCH ₃		
1.5	XX 71 ·	NO ₂	1		TZ 1	<u> </u>
15			-	trophilic aromatic substitution is wrong?	K1	CO-4
	Α	Acetyl and cyano substituents are both deactivating and <i>m</i> -directing.	В	Alkyl groups are activating and <i>o</i> , <i>p</i> -directing.		
	С	Ammonio groups are <i>m</i> -directing	D	Chloro and methoxy substituents are		
		but amino groups are and <i>o</i> , <i>p</i> -		both deactivating and <i>o</i> , <i>p</i> -directing.		
16	A	directing.			V 1	CO 4
16		xample of Michael addition reaction is			K1	CO-4
	A	Stork enamine reaction	B	Friedel craft acylation		
	C	Ziegler alkylation	D	Chichibabin reaction		
17	Whie	ch of the compounds below exists as o	nly thi	ree stereoisomers?	K1	CO-5
	Α	1,4-dibromobutane	В	2,3-dibromobutane		
	C	2,3-dibromopentane	D	1,1-dibromocyclopentane		
18	Enan	tiomers are			K1	CO-5
	A	mirror images and optically active	B	optically inactive compounds		
	C	stereoisomers	D	both A & C		
19		reaction in which the starting materials			K1	CO-5
		rerted to stereoisomerically distinct pro	····			
	A	regioselective	В	chemoselective		
	C	stereospecific reaction	D	all of the above		
20	1	sider the reaction of trans-2-butene wit reaction is correct?	h Br ₂	in CH ₂ Cl ₂ . Which statement concerning	K1	CO-5
	A	The product is optically inactive	В	The product is optically inactive		
		because it is a racemic mixture of		because it is meso		
	-	enantiomers.	~			
	С	The product is optically inactive because it does not possess any	D	The product is optically inactive because it is a racemic mixture of		
		chirality centers.		diastereomers.		
		Se	ction]	1		
21	A	Answer All que Predict the aromatic, non-aromatic a			K2	CO-1
<i>L</i> 1	л				κz	00-1
		compounds. (i) cycloheptatriene		yclobutadiene (iii) cyclooctatetrane		
		(iv) cyclopentadienyl anion (v) pyr	ridine			

		OR		
	В	Explain Homoaromaticity and Anti aromaticity with examples	K2	CO-1
22	Α	Give the order of stability of following carbocations and justify it.	K2	CO-2
		(i) tropylium ion (ii) Benzyl cation (iii) t-butyl carbocation		
		(iv) Isopropyl carbocation (v) di-t- butyl carbocation		
		OR		
	В	Explain the microscopic reversibility with example?	K2	CO-2
23	Α	Explain S _N i Mechanism.	K2	CO-3
		OR		
	В	Explain Gattermann reaction, Gattermann Koch reaction with mechanism	K2	CO-3
24	A	Give the mechanism of electrophilic substitution reactions	K2	CO-4
		OR		
	В	Explain the concept of orientation and reactivity using disubstituted benzene.	K2	CO-4
25	Α	Explain regioselective transformation with examples.	K2	CO-5
		OR		
	В	Analyse the conformations of di-substituted cyclohexane.	K2	CO-5
		Section C Answer ANY THREE Questions (3 x 10 = 30)		
26		Explain with example about effect of aromaticity on band length, resonance energy	K3	CO-1
		and induced ring current.		
27		Explain stability, structure and generation of carbenes and nitrenes ?	K4	CO-2
28		Explain about the NGP in nucleophilic substitution reactions	K5	CO-3
29		Explain the mechanism of Stork Enamine reaction and Friedal Craft acylation of olifinic carbon.	K4	CO-4
30		Explain the optical inactivity of meso tartaric acid using Fischer, Newmann and Sawhorse projection formulas?	К3	CO-5

Outcome/ Unit	K1 (Remembering)	K2 (Understanding)	K3 (Applying)	K4 (Analyzing)	K5 (Evaluating)	K6 (Creating)	Total
Ι	4	2	1	0	0	0	7
II	4	2	0	1	0	0	7
III	4	2	0	0	1	0	7
IV	4	2	0	1	0	0	7
V	4	2	1	0	0	0	7
Total	20	10	2	2	1	0	35

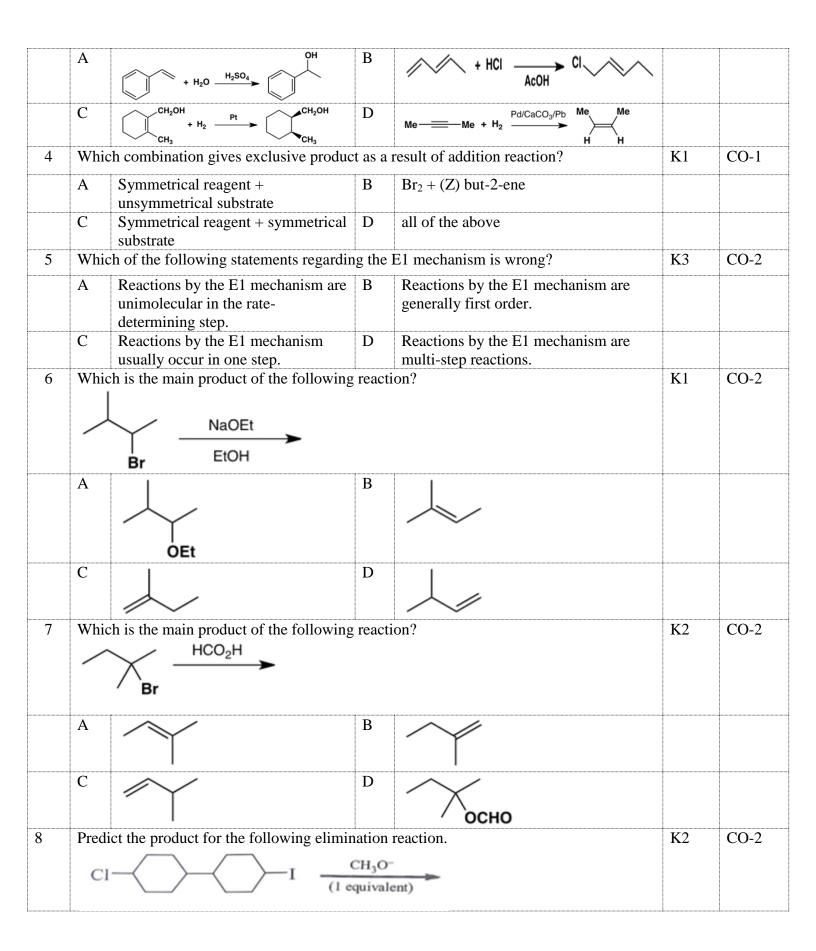
TABLE OF SPECIFICATIONS (Marks wise - Total marks)

Outcome/ Unit	K1 (Remembering)	K2 (Understanding)	K3 (Applying)	K4 (Analyzing)	K5 (Evaluating)	K6 (Creating)	Total
Ι	4	10	10	0	0	0	24
II	4	10	0	10	0	0	24
III	4	10	0	0	10	0	24
IV	4	10	0	10	0	0	24
V	4	10	10	0	0	0	24
Total	20	50	20	20	10	0	120

QP CODE-20P2CH04

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

DEPARTMENT OF CHEMISTRY


MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc. Chemistry	ORGANIC REACTION MECHANISM	II

Time: 3 Hr.

Max.Marks: 75

1		cyclopentane reacts with Br e. What is the structure of Y		to form two products, y & Z, Y is not	K2	CO-1
	Bryvi	$\frac{1}{2} \xrightarrow{Br_2/CCl_4} Y + Z$!			
	A) ^{uuBr} Br	В	BrBrBr		
	C Br	Br	D	Br		
2	Complete the	following reactions: $\downarrow \downarrow \downarrow$ HCl \downarrow HCl \downarrow HCl			K1	CO-1
	A C		В			
	C C		D			
3.	Which of the	following equations does no	t show	the correct main products?	K3	CO-1

	A		В	ci-		
	С		D			
9				l or aryl group in a carbocation migrates	K1	CO-3
	from A	one carbon to a neighboring carbon re	B B	g in 1,2-rearrangement reactions Ireland-Claisen		
		Martius rearrangements				
	С	Wagner-Meerwein	D	Baeyer – Villiger		
10	R	ict the product of Martius rearrangeme			K4	CO-3
	A	NH ₂ R	B	NH ₂ R		
	С	Both A & B	D	None of the above		
11		ch of the following rearrangements use lized enolate (silyl ketene acetal) form		ester of a carboxylic acid in its silyl-	K1	CO-3
	A	Ireland-Claisen	В	Claisen Rearrangement		
	С	Cope Rearrangement	D	all of the above		
12	Whic	ch reaction uses peracids for the conve	rsion (of cyclic ketones to lactones	K4	CO-3
	Α	Von – Richter	В	Baeyer – Villiger		
	С	Stevens	D	Neber		
13		reaction which involves the reaction be oduce pyrimidones under acidic condition		β-keto ester, an aryl aldehyde, and urea s	K1	CO-4
	A	Vilsmeyer formylation	В	Negishi		
	С	Biginelli	D	Luche		
14	Predi	ict the product of the following reactio	n:	<u>i</u>	K2	CO-4

)-($ + H \xrightarrow{0}_{N-} \xrightarrow{1. \text{ POC}_{3}} ? $				
	A) - () - () - () - () - () - () - () -	B			
	С	\rightarrow	D	All of the above		
15	Com	plete the following stille reaction.		<u>.</u>	K4	CO-4
		R'—X + Y ──────────	R'—R	+ Z		
	Α	Y=XSnBu ₃ & Z=RSnBu ₃	В	Y=XPtBu ₃ & Z=RPtBu ₃		
	С	Y=RSnBu ₃ & Z=XSnBu ₃	D	None of the above		
16	1	ict the Steps Y and Step Z in the follo	-		K 1	CO-4
	κ—≡	R = R' = R' $R = R'$	— cu →	X R' Step-Y		
	Α	X = Oxidative addition & Y= Reductive elimination	В	X = Oxidative addition & Y = Reductive addition		
	C	X = Oxidative addition & Y = Oxidative elimination	D	X = Reductive addition & Y= Reductive elimination		
17	N-B	romosuccinimide is used for substitut	tion of l		K 1	CO-5
	Α	α-carbon to carbonyl	В	vinylic		
	С	allylic	D	all of the above		
18	The	reagent DCC is used as	i	.t	K2	CO-5
	A	oxidising agent	В	reducing agent		
	С	dehydrating agent	D	none of the above		
19	Selenium dioxide is mainly used to oxidize thecarbon atoms adjacent to a double bond to form allylic hydroxy derivative				K2	CO-5
	A	α-methylene	В	β-methylene		
	C	carbonyl	D	terminal		
20	The	Wilkinson catalyst is			K2	CO-5
	Α	[RuCl(PPh ₃) ₃]	В	[PdCl(PPh ₃) ₃]		
	C	[RhCl(PPh ₃) ₃]	D	[ReCl(PPh ₃) ₃]		

		Section B Answer All questions (5 x $5 = 25$)		
21	A	Addition reaction of alkenes leads to trans product. Why?	K2	CO-1
		OR		
	В	Write a note on hydroboration	K2	CO-1
22	Α	Discuss E1CB mechanism	K2	CO-2
		OR		
	В	State and explain Hoffman and Saytzeff rule.	K 1	CO-2
23	A	Write a notes on DeLa mare rearrangement.	K1	CO-3
		OR		
	В	Discuss the Neber rearrangement.	K3	CO-3
24	Α	Explain Biginelli reaction.	K 1	CO-4
		OR		
	В	Write a notes on Pauson-Khand reaction	K4	CO-4
25	Α	Explain the role of AlCl ₃ in Friedal Craft's reaction and Fries rearrangement.	K2	CO-5
		OR		
	В	Write the application of DDQ.	K4	CO-5
		Section C Answer ANY THREE Questions (3 x 10 = 30)		
26		Explain the following addition reaction with mechanism:	K1	CO-1
		(i) Simmon-smith reaction (ii) Wittig-Horner reaction		
27		Give the mechanism of Cope elimination and Hoffmann degradation	K2	CO-2
28		Explain Demyanov and Smiles rearragement	K2	CO-3
29		Explain the mechanism of Luche and Suzzuki reactions	K2	CO-5
30		Explain the application of OsO ₄ and Pb(COOMe) ₄ in organic synthesis	K 1	CO-4

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	4	1	-	1	-	-	6
II	3	2	2	-	-	-	7
III	5	-	2	-	-	-	7
IV	5	2	1	-	-	-	8
V	2	4	-	1	-	-	7
Total	19	10	5	2	-	-	35

TABLE OF SPECIFICATIONS (Marks wise - Total marks)

Outcome/Unit	K1 (Remembering)	K2 (Understanding)	K3 (Applying)	K4 (Analyzing)	K5 (Evaluating)	K6 (Creating)	Total
Ι	5	7	5	5	-	-	20
II	4	10	1	5	-	-	18
III	10	10	1	-	-	-	19
IV	5	10	5	3	-	-	44
V	9	20	5	-	-	-	24
Total	33	57	17	13	-	-	120

QP CODE-20P1CH02 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN

(Autonomous)

DEPARTMENT OF CHEMISTRY

MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc., CHEMISTRY	TRANSITION METAL AND NUCLEAR CHEMISTRY	Ι
Time 2 Ure	Max Marka	. 75

Time: 3 Hrs.

Max.Marks : 75

				Answer all questions $(20 \times 1 = 20)$		
1		0		ements does not represent the correct order	K5	CO -1
	of	the property stated agai	inst	it?		
	A	$V^{2+} < Cr^{2+} < Mn^{2+} < Fe^{2+}$: paramagnetic behaviour	В	$Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$: ionic size		
	C	$Co^{3+} < Fe^{3+} < Cr^{3+} < Sc^{3+} :$ stability in aqueous solution	D	Sc < Ti < Cr < Mn : number of oxidation states		
2		among th I does not show variabl		llowing contain partially filled d – sub shell idation states.	K4	CO -1
	A	Zn	B	Cd		
	С	La	D	Hg		
3	Wł	nich one is of the follow	ving	is the lightest transition element?	K 1	CO -1
	Α	Ti	В	Sc		
	С	Fe	D	Hg		
4		has the max	kimu	m number of unpaired electrons.	K3	CO -1
	Α	Fe ²⁺	В	Fe ³⁺		
	С	Co ³⁺	D	Co ²⁺		
5	Laı	nthanide contraction is	caus	sed due to,	K1	CO -2
	A	the appreciable shielding on outer	B	the appreciable shielding on outer electrons by 5d electrons from the nuclear		

		electrons by 4f electrons from the nuclear charge		charge		
	C	the same effective nuclear charge from Ce to Lu	D	the imperfect shielding on outer electrons by 4f electrons from the nuclear charge.		
6	W	hich of following radio	activ	ve elements in lanthanides	K 1	CO -2
	A	Promethium (Pm)	В	Lutetium (Lu)		
	C	Yetterbium (Yb)	D	Samarium (Sm)		
7	Th	e actinides exhibit mor	e sp	read in place than the 4f orbital's	K2	CO -2
	A	The 5f orbital's are more spread in place than the 4f orbital's	B	Energy difference between 5f and 6d orbital is less than that of 4f and 5d orbital's.		
	С	Energy difference between 5f and 6d orbital is more than that of 4f and 5d orbital's.	D	Actinides are more reactive than that of lanthanides.		
8	WI	hich one of these not m	nagic	no	K2	CO -2
	Α	2	В	8		
	С	20	D	36		
9	On	e atomic mass unit is e	equal	to	K1	CO -3
	Α	931.5 eV	В	931.5 erg		
	С	931.5 MeV	D	1931.5 MeV		
10	Ba	ryon contains	<u> </u>		K 1	CO -3
	A	1 quarks	В	2 quarks		
	C	3 quarks	D	4 quarks		
11	W	hich one is related to n	nucle	ar stability	K2	CO -3
	A	Binding energy	В	Magic no		

	С	N/P Ratio	D	All		
12	A	pha particle emission i	s ex	plained with	К3	CO -3
	Α	Binding energy	В	Nuclear tunnel effect		
	С	Nuclear isomerism	D	Auger effect		
13	Ex	oergic nuclear reaction			К3	CO -4
	Α	Q = +ve	B	Q = -ve		
	С	Q = 0	D	None of the above		
14	Со	ulomb barrier is due to	the	· · · · · · · · · · · · · · · · · · ·	K1	CO -4
	A	Projectile +ve target -ve	В	Projectile –ve target +ve		
	С	Projectile +ve and target +ve	D	None of the above		
15	Ex	citation function relate	K 1	CO -4		
	A	Choice of the nuclear reaction	В	Incoming and outgoing projectile beam		
	С	Both A and B	D	None of the above		
16	Α	fter beta decay parent	nucl	eus shows atomic no	K2	CO -4
	Α	-1	В	+1		
	С	-2	D	No change		
17	Wl	nich one is not a charac	teris	stics of nuclear fission	K1	CO -5
	A	Every step two are more lighter nuclei are produced	В	Every step two are more neutrons are produced		
	С	Nuclear chain reaction happened	D	No radiation formed		
18	Th	÷	iso	tope is used in agricultural process	K 1	CO -5
	Α	N13	B	P32		
	С	C 12	D	016		
19		nich one is a detection terial?	and	measurement technique of radioactive	К3	CO -5
	A	Cloud chamber	B	Geiger-Muller counter		

		method				
	С	Scintillation counter	D	All the above		
20	Tł	he half life period of ${}_6C$	14		K2	CO -5
	Α	4352 years	B	5568 years		
	C	8564 years	D	1432 years		
		۶۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	i	Section B		
21	A	Answe Write the structure of	er A (Re	Il questions (5 x 5 = 25) ${}_{2}$ Cl ₈) ²⁻ and (Mo ₆ Br ₈) ⁴⁺	K 1	CO – 1
			(110	OR		
	В	Write short note on elements with example		lour and magnetic properties of d block	K2	CO – 1
22	A	Explain about propert	ies o	of inner transition elements.	K1	CO – 2
				OR		
	В	Write causes and cons	sequ	ences of gadolinium break.	K3	CO – 2
23	A	Briefly explain nuclea	ar sta	ability.	K4	CO – 3
				OR		
	В	What is semi empirica	al fo	ormula? Explain the terms.	K2	CO – 3
24	A	Write note on nuclear	iso	merism.	K1	CO – 4
			1001	OR		
	В	Explain scintillation c	letec		K1	CO – 4
25	A	What are fissile and for	ertil	e nuclides? Give examples.	K2	CO – 5
				OR		
	В	Write short note on a	oplic	cation of radioactive isotopes.	K1	CO – 5
	1	Answer ANY		Section C REE Questions (3 x 10 = 30)		
26		Briefly explain about	gen	eral characteristics of d block elements.	K1	CO – 1
27		Write short note on ex	xtrac	ction of thorium.	К3	CO – 2

28	Explain i) Binding energy ii) Magic number iii) Meson theory	K2	CO – 3
29	Explain the following detection methods i) cloud chamber ii) scintillation detector	K4	CO – 4
30	Briefly explain the term nuclear fission and nuclear fusion reaction.	K1	CO – 5

Outcome/Unit	K1 (Remembering)	K2 (Understanding)	K3 (Applying)	K4 (Analyzing)	K5 (Evaluating)	K6 (Creating)	Total
Ι	3	2	0	1	1	0	7
II	3	2	2	0	0	0	7
III	2	3	1	1	0	0	7
IV	4	1	1	1	0	0	7
V	4	2	1	0	0	0	7
Total	16	10	5	3	1	0	35

TABLE OF SPECIFICATIONS (Marks wise - Total marks)

Outcome/Unit	K1	K2	К3	K4	K5	K6	Total
Outcome/Omt	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	16	6	0	1	1	0	24
II	7	2	15	0	0	0	24
III	2	16	1	5	0	0	24
IV	12	1	1	10	0	0	24
V	17	6	1	0	0	0	24
	54	31	18	16	1	0	120

QP CODE- 20P2CH05

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

DEPARTMENT OF CHEMISTRY

MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc. Chemistry	CHEMICAL BONDING AND COORDINATION CHEMISTRY	Π

Time: 3 Hrs.

Max.Marks : 75

1	Wh	hich of the following molec	ule have io	nic bond?	K1	CO-1
	A	O ₂	В	Cl ₂		
	С	NaCl	D	SO ₂		
2	Wh a)	hich factor is used to determ c) d)	nine if a bor	nd is consideredionic	K1	CO-1
	A	Electronegativity	В	mass		
	С	size	D	number of atoms bound.		
3	Wh	hich element in periodic tab	K1	CO-1		
	Α	Hydrogen	В	Carbon		
	С	Fluorine	D	Helium		
4		hich element in periodic tab	K3	CO-1		
	Α	Pb	В	O ₂		
	С	Ba	D	Ag		
5	:	hat kind of hybrid orbitals a lecules?	K2	CO-2		
	A	sp ²	В	sp ³		
	С	sp	D	d ² sp		
6	Wh	ich one of the following vi	olate the oc	ctet rule?	K2	CO-2
	Α	AsF ₅	B	NF ₃		

	C	PCl ₃	D	CBr ₄		
7			ectro	ons and four antibonding electrons.	K3	CO-2
		refore it has a bond order of,	1	1		
	A	3	В	7		
	C	1	D	2		
8		atoms in water molecule adopt we pair of electrons?	hat	kind of geometry if you include the	K2	CO-2
	A	Linear	В	Tetrahedral		
	C	Pyramidal	D	Octahedral		
9	sp3	hybridization involves the hybrid	lizati	ion of how many atomic orbitals?	K2	CO-3
	A	3	В	2		
	C	4	D	none 5 theabove		
10	The	geometry of XeF ₄ is fi	rom	the VESPR theory	K2	CO-3
	A	tetrahedral	В	angular		
•	C	trigonalplanar	D	Square planar		•
11	1	w many unpaired electrons are the applex	ere ir	the strong field Iron(II) octahedral	K2	CO-3
	A	1	В	2		
	C	0	D	4		
12	Stro	ong field ligands such as CN-	1		K4	CO-3
	A	usually produce low spin complexes and high crystal field splittings.	В	usually produce high spin complexes and small crystal field splittings.		
	С	cannot form low spin complexes	D	usually produce low spin complexes and small crystal field splittings.		
13	Wh	ich one of the following complex	es ca	an exhibit geometrical isomerism?	K1	CO-4
	A	[Pt(NH3)2Cl2] (square planar)	В	[Zn(NH3)2Cl2] (tetrahedral)		
	C	[Cu(CN)2]- (linear)	D	[Cu(NH3)4]2+ (square planar)		
14	Wh	ich one of the following complex	e car	n exhibit cis isomer? a) b) c d	K1	CO-4
	A	[Pt(NH3)2Cl2]	В	[PtCl4]		
	C	[Cu(Cl)2]-	D	[Pt(NH3)4]2+		
15	Wh	ich one of the following complex	es ca	an exhibit transisomer?	K2	CO-4
•	A	[Pt(NH3)2C12]	В	[PtCl4]		
	C	[Cu(Cl)2]-	D	[Pt(NH3)4]2+		
16	-	anometallic chemistry is a branch sessing	of of	chemistry deals with compounds	K2	CO-4

	A	Carbon-CarbonBond	B	Metal-Metal Bond		
	C	Metal-CarbonBond	D	Metal-BoronBond		
17		e multiple bond character of the m to the presence of	K2	CO-5		
	A	Carbon-CarbonBond	В	Metal-Metal Bond		
	C	Hydrogen Bonding	D	Backbonding		
18	Ato	-	he te	erm symbols of the form	K 1	CO-5
	A	^{J+1} L _{2S+1}	В	^J L _{2S+1}		
	С	^{2S+1} L J	D	^{2S} L _J		
19	The	e ground state term symbol for Flu	ıorin		K2	CO-5
	Α	² P _{3/2}	В	² P _{5/2}		
	C	³ P _{3/2}	D	² S _{3/2}		
20	The	e oxidation state of Ferrocene (Fe	(C5F	15)2) is	K3	CO-5
	Α	3+	В	0		
	C	2+	D	4+		
			tion			
21	Α	Answer All que State and explain Fajan's rule w			K4	CO-1
- 1						
	В	Describe radius ratio rule.	U	R	K3	CO-1
22	A	Explain hybridization and geom	otru	zofNH3	K3 K2	CO-1 CO-2
	Π		-	DR	K2	0-2
	В	What are the failures of VBT.	U	×	K4	CO-2
23	A	State and explain John Teller di	stor	tion with an example	K4 K1	CO-2 CO-3
23	11	State and explain John Tener u		R	131	0-5
	В	Describe splitting of d-ordbitals			K4	CO-3
24	A	Write a note on trans effect with			K3	CO-4
<i>ц</i> т	11	The a note on trains effect with		R	122	
	В	Discuss hydrogenation of alken			K2	CO-4
25	A	(i) What is ground term for d2 s		-	K1	CO-5
	11	(i) Give selection rule for elect				
			0	R		
	В	Draw and explain Orgel diagra	m of	f d3 system	K1	CO-5
		Section Answer ANY THREE Q		tions (3 x 10 = 30)		

26	Write note on (i) Lattice energy (ii) Born-Habercycle	K3	CO-1
27	Explain LCAO method for molecular orbitals inO2.	K1	CO-2
28	Illustrate splitting of d-orbitals in octahedral and Tetrahedral geometry.	K3	CO-3
29	i) Differentiate thermodynamic and kinetic stability.(ii) Write notes on stability constant.	K1	CO-4
30	(i) Derive term symbol for d4 system.(ii) Explain charge transfer spectra with an example.	K2	CO-5

Outcome/Unit	K1 (Remembering)	K2 (Understanding)	K3 (Applying)	K4 (Analyzing)	K5 (Evaluating)	K6 (Creating)	Total
Ι	3	0	3	1	0	0	7
II	1	4	1	1	0	0	7
III	1	3	1	2	0	0	7
IV	3	3	1	0	0	0	7
V	3	3	1	0	0	0	7
Total	20	10	2	2	1	0	35

TABLE OF SPECIFICATIONS (Marks wise - Total marks)

Outcome/Unit	K1 (Remembering)	K2 (Understanding) 0	K3 (Applying)	K4 (Analyzing)	K5 (Evaluating)	K6 (Creating)	Total
Ι	3	0	16	5	0	0	24
II	10	8	1	5	0	0	24
III	5	3	10	6	0	0	24
IV	12	7	5	0	0	0	24
V	11	12	1	0	0	0	24
Total	41	30	33	16	0	0	120

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

DEPARTMENT OF CHEMISTRY

MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc. Chemistry	GROUP THEORY, KINETICS AND SURFACE CHEMISTRY	Ι

Time: 3 Hrs.

Max.Marks : 75

				Answer all questions (20 x 1 =	= 20)	
1	W	hich one has high	er sy	mmetry?	K4	CO-1
	Α	Square	В	Sphere		
	C	Rectangle	D	Cube		
2	Nu	mber of irreducil	ole re	K5	CO-1	
	Α	2	В	3		
	C	4	D	None of the above		
3	Irre	educible represen	itatio	K1	CO-1	
	Α	Basic representation	В	Reducible		
	C	Non reducible	D	Both A&C		
4	Po	int group of Benz	zene	is	K5	CO-1
	Α	D _{5h}	В	D _{6h}		
	C	D _{6d}	D	None of the above		
5		mber of vibration	···• , ······	*	K5	CO-2
	Α	2	В	3		
	С	6	D	9		

6	Nu	mber of faces in o	octal	nedron is	K2	CO-2
	Α	6	В	8		
	С	10	D	12		
7	Po	int group of Rhon		K1	CO-2	
	A	C 2/m	В	R 3m		
	С	P 6mm	D	123		
8	Na	ture of hybrid in A	AB ₃	type molecule is	K5	CO-2
	Α	sp ³	В	sp		
	С	dsp ²	D	None of the above		
	• •					
9		e number of chair ctions are called a		rier is greater than unity. Such	K2	CO-3
	A	Chain reactions	B	Explosion		
	С	Stationary chain reactions	D	Non stationary reactions		
10	·_	equation is	bes	t applicable to study of free energy	K1	CO-3
	A	Tafel	В	Hammett		
	С	Free energy relation	D	None of the above		
11		unimolecular reac activation	tion	may have a entropy	K1	CO-3
	A	One	B	Zero		
	С	Three	D	Five		
12	Th	e theory of pressu	ire e	ffects on rate was formulated by	K1	CO-3
	A	Van't hoff	В	Arrhenius		
	C Lewis and D Eigen Randall					
13	Th	e word catalysis v	vas 1	first used by	K1	CO-4

	A	Dobernier	В	Thenard					
	С	Berzelius	D	Both A & B					
14	4 Eobs of Arrhenius ir			nediates is	K3	CO-4			
	A	-U+E'2	B	E ₂					
	С	-U+E ₂ +E' ₂	D	-U+E ₂					
	•								
15	If I	PH = 5, the rate of	f enz	zyme catalysed reaction is	K4	CO-4			
	A Increase B Decreases		Decreases						
	С	Moderate	D	No changes					
1.6		. 1 .1		. 1 1	17.1				
16	ren			yme catalysed reaction is cannot be	K1	CO-4			
	Α	Competetive	В	Non competitive					
	С	Uncompetetive	D	Irreversible					
17	Ga	s behaves	_ in]	Langmuir adsorption isotherm	K2	CO-5			
	A	Uniform energetically	В	Ideally					
	C	Non ideally	D	None of the above					
18	Ph	ysical adsorption	is us	sually observed	K2	CO-5			
	Α	Mobile surface	В	Inter surface					
	C	Both A & B	D	None of the above					
	•	-							
19	Ad	sorption curves a	re m	athematically expressed as	K1	CO-5			
	A	a=f(T)	В	a=f(T,P)					
	C	a=f(P)	D	P=f(T,A)					
20		adsorption i	isoth	erm is valid over a certain range of	K2	CO-5			
	A Pre	Langmiuir	В	Type VII					
	С	Freundlich	D	Type V					
	Section B Answer All questions (5 x 5 = 25)								

21	A	Write briefly about improper axis of symmetry with an	K1	CO-1
		example.K-1 OR		
	~		774	
	В	What are the rules of group?	K1	CO-1
22	Α	Derive selection rule for IR spectra using group theory.	К3	CO-2
		OR		
	В	Determine hybrid orbitals in CH ₄ .	K3	CO-2
23	Α	Explain the effect of dielectric constant on reaction rate in solution.	K4	CO-3
		OR		
	В	Derive rate constant for fast reaction by using temperature jump technique.	K2	CO-3
24	A	Describe about Bronsted catalysis Law.	K2	CO-4
	•	OR		
	В	Describe about Vant Hoff and Arrhenius intermediates.	K4	CO-4
25	A	List out the major difference between physical and chemical adsorption.	K2	CO-5
		OR		
	В	Describe the effect of temperature on adsorption.	K2	CO-5
	I	Section C Answer ANY THREE Questions (3 x 10 = 30)		
26		Deduce the character table for C_{2v} point group	К5	CO-1
~-				
27		Determine the number of vibrational modes in H ₂ O.	K5	CO-2
28		Explain the effect of ionic strength on reaction rate in solutions.	K4	CO-3
29		Explain the effect of substrate concentration, temperature and pH on enzyme catalyzed reactions.	K2	CO-4
30		Discuss briefly about Langmuir adsorption isotherm and its significances.	K2	CO-5

Outcome/Unit	K1 (Remembering)	K2 (Understanding)	K3 (Applying)	K4 (Analyzing)	K5 (Evaluating)	K6 (Creating)	Total
Ι	3	0	0	1	3	0	7
II	1	1	2	0	3	0	7
III	3	2	0	2	0	0	7
IV	2	2	1	2	0	0	7
V	1	6	0	0	0	0	7
Total	10	11	3	5	6	0	35

TABLE OF SPECIFICATIONS (Marks wise - Total marks)

Outcome/Unit	K1 (Remembering)	K2 (Understanding)	K3 (Applying)	K4 (Analyzing)	K5 (Evaluating)	K6 (Creating)	Total
Ι	11	0	0	1	12	0	24
II	1	1	10	0	12	0	24
III	3	6	0	15	0	0	24
IV	2	15	1	6	0	0	24
V	1	23	0	0	0	0	24
	18	45	11	22	24	0	120

QP CODE-20P1CHE01 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

DEPARTMENT OF CHEMISTRY

MODEL QUESTION PAPER

Programme (s)	Title of the Paper	Semester	
M.Sc. Chemistry	NANOSCIENCE AND NANOTECHNOLOGY	Ι	

Time: 3 Hrs.

Max. Marks : 75

1	W	ho coined the word 'nanotechnol	ogy'?		K 1	CO1
	Α	Eric Drexler	В	Richard Feynmann		
	C	Sumio Tijima	D	Richard Smalley		
2	Na	noscience can be studied with th	K2	CO1		
	Α	quantum mechanics	В	Newtonian mechanics		
	C	macro-dynamics	D	geophysics		
3	Wi	K 1	CO1			
	Α	electron microscope	В	magnetic resonance		
	С	condensation technique	D	mass spectrograph		
4	W	hich of these historical works of	K1	CO1		
	A	Lycurgus cup	В	Medieval stained glass windows in churches		
	С	Damascus steel swords	D	All of the above		
5	Ca	rbon atoms make type of t	ond with	other carbon atoms.	K2	CO2
	A	covalent	В	ionic		
	C	metallic	D	hydrogen		

6	1	e of the advantages of sol-gel metho wder.	d is al	ble to get uniform and	K1	CO2
	Α	Micro size	B	Large size		
	С	Nano size	D	Small size		
7		hat is the general name for the class of tices?	of stru	ctures made of rolled up carbon	K1	CO2
	Α	A Nanorods B Nanotubes				
	C	Nanosheets	D	Fullerrods		
8	Wl	nile synthesizing the nano cones the	olasm	a temperature is above	K1	CO2
	Α	1000°C	B	1500°C		
	С	2000°C	D	2500°C		
9	Th	e size of a quantum dot is nm.			K1	CO3
	A	5	B	10		
	C	50	D	100		
10	D				17.1	000
10				what kind of reference material is used?	K1	CO3
	A	Chemically active	В	Physically active		
	C	Inert	D	Having catalytic property		
11	Th	ermal analysis is defined as			K2	CO3
	A	Measurement of concentration of materials as a function of temperature	В	Measurement of solubility of materials as a function of temperature		
	C	Measurement of physical properties as a function of temperature	D	Measurement of line positions of crystals as a function of temperature		
12	Gr	aphene is a:	<u> </u>		K1	CO3
	A	wide band-gap semiconductor	В	gapless-band semiconductor		
	Awhile band-gap semiconductorDgapless-band semiconductorCnot a semiconductor but behavesDa narrow bandgap semiconductor					
	-	like graphite	_			
10	XX 71		f		17.0	CO 4
13		nich of the following is the principal nomaterials to differ significantly fro			K2	CO4
	A	Size distribution	B	Specific surface feature		
L	i		1			

	C	Quantum size effects	D	All the above		
14	W 71	act are the advantages of page as	mnositor	analta ana 2	K2	CO4
14		hat are the advantages of nano-co		-	K2	C04
	A	Lighter and biodegradable	В	Enhanced thermal stability, conductivity and mechanical strength		
	C	Gas barrier properties	D	All the above		
15	Со	ating the nano crystals with the c	K2	CO4		
	Α	Corrosion	В	Corrosion resistant		
	C	Wear and tear	D	Soft		
16		is the field in which th	e nano na	articles are used with silica coated iron	K3	CO4
10	ox	ide iron oxide.	ie nano pa	anteles are used with sinea coated non	KJ	04
	A	Magnetic applications	В	Electronics		
	C	Medical diagnosis	D	Structural and mechanical materials		
17	Th	e genetic code translated the lang	uage of		K1	CO5
	Α	Proteins into that of RNA	В	Amino acids into that of RNA		
	С	RNA into that of proteins	D	RNA into that of DNA		
18		nano scale distribution of the	K3	CO5		
	A	Carbide	В	Tungsten		
	C	Hydrides	D	Nitrites		
19	1	e synthesized magnetic nano part ange automatically.	K1	CO5		
	A	Zinc	В	Copper		
	C	Iron	D	Zirconium		
20	Na	no particles target the rare	K3	CO5		
	A	Infection	В	Fever		
	C	Tumour	D	Cold		
		Answer Al	Section auestio	B ns $(5 \times 5 = 25)$		
21	A	Write the difference between or			K2	CO1
			0	R		
	В	Sketch the steps involved in nar	notech gei	neration.	K2	CO1

22	Α	Discuss about the synthesis of nanomaterial by sol-gel method.	K2	CO2
		OR		
	В	Briefly explain the synthesis of nanomaterials using electrodeposition process	K2	CO2
23	A	Explain the thermal gravimetric analysis.	K2	CO3
		OR		
	B	Write the applications of scanning electron microscopy.	K2	CO3
24	A	Discuss the applications of nanoparticles in food and agriculture.	K2	CO4
		OR	•	
	В	Write note on risks of nanomaterials.	K2	CO4
25	A	What are biopolymers and biomaterials? Explain with an example.	K2	CO5
		OR		
	В	Write short note on; Multilayer films.	K2	CO5
		Section C Answer ANY THREE Questions (3 x 10 = 30)	•	
26		Explain Indian and global scenario in nanotechnology.	K5	CO1
27		Discuss about the synthesis of nanomaterial by PVD method.	К3	CO2
28		What is SAED analysis? Explain with examples	K4	CO3
29		Briefly explain the properties and applications of metal nanocomposites.	K5	CO4
30		Explain the terms; DNA double nanowire, Genetic code and protein nanoparticle.	K3	CO5

Outcome	K1	K2	K3	K4	K5	K6	Total
/Unit	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	03	03	0	0	01	0	07
II	03	03	01	0	0	0	07
III	03	03	0	01	0	0	07
IV	0	05	01	0	01	0	07
V	02	02	03	0	0	0	07
Total	11	16	05	01	02	0	35

TABLE OF SPECIFICATIONS (Marks wise - Total marks)

Outcome	K1	K2	K3	K4	K5	K6	Total
/Unit	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	03	11	0	0	10	0	24
II	03	11	10	0	0	0	24
III	03	11	0	10	0	0	24
IV	00	13	01	0	10	0	24
V	02	02	10	10	0	0	24
Total	11	48	21	20	20	0	120

QP CODE-20P2CHE03 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

DEPARTMENT OF CHEMISTRY

MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc. CHEMISTRY	ELECTROCHEMISTRY & PHOTOCHEMISTRY	II

Time: 3 Hrs.

Max.Marks :75

1	How	K2	CO-1			
	A	The particles are charged as a matter ofcourse	В	As a result of the attractive forces acting between theparticles		
	C	Ions are adsorbed on the surface	D	As a result of the adsorption of a polar substances.		
2	The	reverse ofelectro-osmosis			K3	CO-1
	A	zetapotential	В	Osmosis		
	С	iso-electric point	D	streaming potential		
3	In th	K1	CO-1			
	A	electrophoreticmobility	В	zetapotential		
	C	polarization	D	Poisson'svelocity	-	
4	Whic	K2	CO-1			
	A	Ultracentrifugation	В	Sedimentation		
	C	Gelfiltration	D	Centrifugation		
5	Pick out the ionic strength for a solution of 0.10 MNaCl.					CO-2
	Α	0.2 M	В	0.5 M	-	
	C	0.1 M	D	0.25 M	-	
6	As th	he ionic strength, μ increases the act	ivity	coefficient(Y)	K2	CO-2
	Α	increases	В	decreases		
	C	neutral	D	None of these	-	

7	Debye	K1	CO-2			
	А					
	С	C Low concentration D non-ideal solution				
8	Which	K1	CO-2			
	Α	Cr ²⁺	B	Co ³⁺		
	С	C Co2+ D Fe3+				
9	A photochemical reaction is				K1	CO-3
	А	Catalyzed by light	В	initiated by light		
	С	accompanied with emission oflight	D	used to convert heat energy into light		
10		hemical reaction of trans-2-butene	e wit	h itself will produce which of the	K3	CO-3
	follow	ing products?		S S A 7 7 1		
	~ //	Light		í Y ír		
	\sim	$\sim - \land$				
		А	В	C D		
	А	A and B	В	C and D		
	С	Aand C	D	B and D		
11	Fluores	scence is a slow processon			K1	CO-3
	А	10 ⁻⁹ to10 ⁻⁷ sec	В	10 ⁻⁸ to10 ⁻⁶ sec		
	С	10 ⁻³ to10 ⁻⁸ sec	D	10 ⁻⁹ to10 ⁻¹ sec		
12	Photoc	hemical reactions are independent	tof		K1	CO-3
	А	Pressure	B	Temperature		
	С	Free energy	D	All the above		
13	-	otochemically-induced electrocyc ile's molecular orbitals?	lic 1	eaction involves which of a	К3	CO-4
	Α	HOMO-1	B	НОМО		
	С	LUMO	D	LUMO ⁺¹		
14		of the following reactions conver rated carbonyl compound?	ts an	unsaturated ether to a γ , δ -	К3	CO-4
	Α	Coperearrangement	В	Claisenrearrangement		
	С	Photochemical[2+2]reaction	D	Diels-Alderreaction		
15	The tra	insition in intersystem crossingis		1	K 1	CO-4
	A	$S_1 \rightarrow T_1$	В	$T_1 \rightarrow S_0$		
£			<u>i</u>			

	С	$S_0 \rightarrow S_n$	D	$T_1 \rightarrow S_0$		
16	Exan	ples for Non-Equilibration of Ex	cited R	otamersis	K2	CO-4
	Α	1,3-cyclohexadiene	В	hexane		
	С	Fluvene	D	cyclohexane		
17	Exan	ple for atomicphotosensitizers			K1	CO-5
	Α	Mercury	В	Nitrogen		
	С	Carbonmonoxide	D	Nickel		
18	Emis	sion occurs at ordinary temperatu	re, the	emitted radiation is also known as	K2	CO-5
	Α	Black light	В	Blue light		
	С	Cold light	D	White light		
19	The v	wavelength of X-ray is	i		K1	CO-5
	Α	Below 0.1nm	В	10–200nm		
	С	360–800nm	D	0.1–10nm		
20	Syste	K2	CO-5			
	Α	2-hydroxypropanoicacid	В	hydroxyester		
	С	polyesters	D	polyamides		
			Section	n B ns (5 x 5 = 25)		
21	A	K2	CO-1			
21	Δ	K 2	0-1			
	מ			OR	V 1	CO 1
~~	B	Explain the Streaming and S			K1	CO-1
22	A	What do you mean by Debye-	~	K2	CO-2	
				OR		
	В	Explain the Quantitative and c limiting law.	ualitat	ive verification of Debye- Huckel	K3	CO-2
23	Α	Explain the construction of Jal	olonski	i diagram	K3	CO-3
				OR		
	В	Write a note on Frank- Condo	K3	CO-3		
24	A	Explain the formation ofperox	ycomp	oounds.	K4	CO-4
				OR		
	В	Write a note on photo – fries	rearra	angement	K2	CO-4
25	A	······		tizers and chemistry of vision?	K1	CO-5
				OR		

	В	Explain photodegredation and photo stabilisation.	K2	CO-5
		Section C Answer ANY THREE Questions (3 x 10 = 30)		
26		Explain the theories of doublelayer.	K4	CO-1
27		Derive the Debye - Huckel theory of inter-ionic attraction and ionicatmosphere.	К3	CO-2
28		What is mean by photochemical reactions and explain photo reduction and oxidation, Photodimerization.	K3	CO-3
29		Explain the Norish type I and norish type II with examples.	K3	CO-4
30		Explain the ultraviolet screening agents, optical bleach and photochronism	K4	CO-5

Outcome/Un	K1	K2	K3	K4	K5	K6	Tota
it	(Rememberin	(Understandin	(Applyin	(Analyzin	(Evaluatin	(Creatin	1
	g)	g)	g)	g)	g)	g)	
Ι	2	3	1	1	-	-	7
II	2	2	3	-	-	-	7
III	3	-	4	-	-	-	7
IV	1	2	3	1	-	-	7
V	3	3	_	1	-	-	7
Total	11	10	11	3	_	-	35

TABLE OF SPECIFICATIONS (Marks wise - Total marks)

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	6	7	1	10	-	-	24
II	2	6	16	-	-	-	24
III	3	-	21	-	-	-	24
IV	1	6	12	5	-	-	24
V	7	7	-	10	-	-	24
Total	19	26	50	25	_	-	120